[atAGC034E]Complete Compress
先考虑枚举最后的点,并以其为根
首先,操作祖先-后代关系是没有意义的,因为以后必然有一次操作会操作祖先使其返回原来的位置,那么必然不如操作后代和那一个点(少一次操作)
考虑某一次操作,总深度和恰好减2,因此若有解,操作次数为深度和的一半
考虑dp,令$f_{k}$表示以$k$为根的子树经过若干次操作后,最小的深度和
考虑加入一棵以$son$为根的子树,有三种情况:
1.$f_{son}$大于之前所有子树内部节点的深度和,那么之前的子树中节点不在内部操作,全部与这棵子树抵消,剩下的深度即为$f_{k}$
2.之前子树内部最小的答案也大于了这棵子树内部的深度和,那么用这棵子树的深度和去抵消之前的深度
3.可以证明,一定有方案使得其能够比较完美的匹配,换言之根据奇偶性判断剩下0或1
更具体的,记$g_{k}$表示以$k$为根的子树内部初始深度和(相对于$k$),$sz_{k}$表示以$k$为根的子树内不节点个数,转移如下($g_{k}$是不断加入子树,即记录之前所有子树内部深度和):
$$
f_{k}=\begin{cases}(f_{son}+sz_{son})-g_{k}(g_{k}<f_{son}+sz_{son})\\ f_{k}-(g_{son}+sz_{son})(f_{k}>g_{son}+sz_{son})\\ (f_{k}+g_{son}+sz_{son})\mod\ 2\end{cases}
$$
(关于$g_{k}$的转移是$g_{k}=g_{k}+g_{son}+sz_{son}$)
最后判定$f_{root}$即可,时间复杂度为$o(n^{2})$,可以通过


1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 2005
4 #define ll long long
5 struct ji{
6 int nex,to;
7 }edge[N<<1];
8 int E,n,x,y,ans,head[N],sz[N],g[N],f[N];
9 char s[N];
10 void add(int x,int y){
11 edge[E].nex=head[x];
12 edge[E].to=y;
13 head[x]=E++;
14 }
15 void dfs(int k,int fa){
16 sz[k]=g[k]=f[k]=0;
17 if (s[k]=='1')sz[k]=1;
18 for(int i=head[k];i!=-1;i=edge[i].nex)
19 if (edge[i].to!=fa){
20 dfs(edge[i].to,k);
21 sz[k]+=sz[edge[i].to];
22 if (g[k]<f[edge[i].to]+sz[edge[i].to])f[k]=f[edge[i].to]+sz[edge[i].to]-g[k];
23 else{
24 if (g[edge[i].to]+sz[edge[i].to]<f[k])f[k]-=g[edge[i].to]+sz[edge[i].to];
25 else f[k]=((f[k]+g[edge[i].to]+sz[edge[i].to])&1);
26 }
27 g[k]+=g[edge[i].to]+sz[edge[i].to];
28 }
29 }
30 int main(){
31 scanf("%d%s",&n,s+1);
32 memset(head,-1,sizeof(head));
33 for(int i=1;i<n;i++){
34 scanf("%d%d",&x,&y);
35 add(x,y);
36 add(y,x);
37 }
38 ans=n*n;
39 for(int i=1;i<=n;i++){
40 dfs(i,0);
41 if (!f[i])ans=min(ans,g[i]/2);
42 }
43 if (ans==n*n)ans=-1;
44 printf("%d",ans);
45 }
[atAGC034E]Complete Compress的更多相关文章
- 「AGC034E」 Complete Compress
「AGC034E」 Complete Compress 显然可以枚举根. 然后把某两棵棋子同时往深度浅的方向提,即对不存在祖先关系的两个棋子进行操作. 如果能到达那么就更新答案. 问题转化为如何判定能 ...
- @atcoder - AGC034E@ Complete Compress
目录 @description@ @solution@ @accepted code@ @details@ @description@ 给定一个 N 个点的树,编号为 1, 2, ..., N.第 i ...
- AT4995-[AGC034E] Complete Compress【树形dp】
正题 题目链接:https://www.luogu.com.cn/problem/AT4995 题目大意 \(n\)个点的一棵树,上面有一些棋子,每次可以选择两个棋子移动到他们之间的路径上相邻的点上, ...
- 30个HTML初学者建议
The most difficult aspect of running Nettuts+ is accounting for so many different skill levels. If w ...
- 【AtCoder】AGC034
AGC034 刷了那么久AtCoder我发现自己还是只会ABCE(手动再见 A - Kenken Race 大意是一个横列,每个点可以跳一步或者跳两步,每个格子是空地或者石头,要求每一步不能走到石头或 ...
- WC2021 题目清单
Day2 上午 <IOI题型与趣题分析> 来源 题目 完成情况 备注 IOI2002 Day1T1 Frog 已完成 IOI2002 Day1T2 Utopia IOI2002 Day1T ...
- 多校联训 DP 专题
[UR #20]跳蚤电话 将加边变为加点,方案数为 \((n-1)!\) 除以一个数,\(dp\) 每种方案要除的数之和即可. 点击查看代码 #include<bits/stdc++.h> ...
- use zlib lib to compress or decompress file
If you want to compress or decompress file when writing C++ code,you can choose zlib library,that's ...
- NYOJ 1067 Compress String(区间dp)
Compress String 时间限制:2000 ms | 内存限制:65535 KB 难度:3 描写叙述 One day,a beautiful girl ask LYH to help he ...
随机推荐
- JOIN US | SphereEx 精英集结
新环境.新气象,SphereEx 欢迎志同道合的你加入! 关于 SphereEx 北京思斐软件技术有限公司(sphere-ex.com),是一家致力于构建新型分布式数据基础设施的公司,秉承开源.共享. ...
- FastAPI 学习之路(六)查询参数,字符串的校验
系列文章: FastAPI 学习之路(一)fastapi--高性能web开发框架 FastAPI 学习之路(二) FastAPI 学习之路(三) FastAPI 学习之路(四) FastAPI 学习之 ...
- Vue3学习(三)之网站首页布局开发
一.前言 上篇文章已经提到集成Ant Design Vue后,和Element Ui一样,还是组件的使用,然后就是复制粘贴改了. 二.实际案例 先搞个布局布局看看,也就是我们说的layout,如下图: ...
- Azure Bicep(三)变量控制
一,引言 当我们在使用 Azure Bicep 的时候会出现以下几个问题: 1)文件中有很多地方会重用很多相同的值 2)输入参数可以在统一的地方进行修改 带着这些问题,我们开始今天的内容,学习如何在 ...
- 微信小程序的登录流程
一.背景 传统的web开发实现登陆功能,一般的做法是输入账号密码.或者输入手机号及短信验证码进行登录 服务端校验用户信息通过之后,下发一个代表登录态的 token 给客户端,以便进行后续的交互,每当t ...
- Java:ConcurrentHashMap类小记-3(JDK8)
Java:ConcurrentHashMap类小记-3(JDK8) 结构说明 // 所有数据都存在table中, 只有当第一次插入时才会被加载,扩容时总是以2的倍数进行 transient volat ...
- Idea Maven auto Import
- 实验5:开源控制器实践——POX
一.实验目的 1.能够理解 POX 控制器的工作原理: 2.通过验证POX的forwarding.hub和forwarding.l2_learning模块,初步掌握POX控制器的使用方法: 3.能够运 ...
- 最新JS正则表达式验证手机号码(2019)
根据移动.联通.电信的电话号码号段,实现一个简单的正则表达式来验证手机号码: // 手机号校验 export function isPhoneNumber(phoneNum) { // let reg ...
- hdu 5172 GTY's gay friends(线段树最值)
题意: GTY有n个朋友,站成一排,每个人有一个特征值ai. 有m个询问.每次询问给两个数L,R.问你[L,R](即aL...aR)是否是1..(R-L+1)的一个全排列. 是输出YES,否则输出NO ...