[loj3031]聚会
对于一棵树(初始仅包含节点0),不断加入一个不在树中的节点$u$(不需要随机),并维护这棵树
具体的,对这棵树点分治,假设当前重心$v$有$d$个子树,假设其中第$i$个子树根为$r_{i}$,子树大小为$s_{i}$,且不妨假设子树大小单调不上升(即$s_{1}\ge s_{2}\ge ...\ge s_{d}$)
初始令$i=1$,并询问$(u,r_{2i-1},r_{2i})$,并分类讨论:
1.若$u$在$r_{2i-1}$或$r_{2i}$的子树中,询问结果为$r_{2i-1}$或$r_{2i}$,递归询问结果的子树即可
2.若$u$在$r_{2i-1}$或$r_{2i}$到$v$的路径即其子树中,询问结果为$\ne u,r_{2i-1},r_{2i}$,再询问一次$(u,v,r_{2i-1})$即可
3.若$u$不为上述两种情况,询问结果为$v$,若$2i\ge d$则$u$为$v$的新儿子,否则令$i$增加1并重复此过程
(特别的,若$d$为奇数,我们认为$r_{d+1}=v$,且若为第二种情况,则一定在$r_{d}$到$v$的路径上)
下面,来考虑操作次数:
令$T(n)$为$n$个节点的子树中最大询问次数,考虑$u$结束的情况,即以下三种——
(为了方便,记$D=\min(n-1,18)$,显然$d\le D$)
1.在第一种情况下结束:假设在$i$时结束,则至多需要$T(s_{2i-1})+i$次(由于$s_{2i-1}\ge s_{2i}$)
显然有$\begin{cases}s_{i}\le \lfloor\frac{n}{2}\rfloor&(i=1)\\s_{i}\le \lfloor\frac{n-1}{i}\rfloor&(2\le i\le d)\end{cases}$,也即$T_{1}(n)=\max(T(\lfloor\frac{n}{2}\rfloor)+1,\max_{2\le i\le \lceil\frac{D}{2}\rceil}T(\lfloor\frac{n-1}{2i-1}\rfloor)+i)$
2.在第二种情况下结束:此时即询问$\lceil\frac{d}{2}\rceil+1$,即$T_{2}(n)=\lceil\frac{D}{2}\rceil+1$
3.在第三种情况下结束,此时即询问$\lceil\frac{d}{2}\rceil$次,同理即$T_{3}(n)=\lceil\frac{D}{2}\rceil$
最终$T(n)=\max(T_{1}(n),T_{2}(n),T_{3}(n))$,初始状态为$T(1)=0$(此时将$u$作为该点的儿子即可),最大询问次数为$\sum_{i=1}^{n-1}T(i)$
经过计算,可得在$n=2\times 10^{3}$时,该值为39371(官方题解给出的值是39632),可以通过


1 #include<bits/stdc++.h>
2 #include "meetings.h"
3 using namespace std;
4 #define N 2005
5 struct Edge{
6 int nex,to;
7 }edge[N<<1];
8 vector<int>v;
9 int E,rt,head[N],vis[N],sz[N],Vis[N];
10 bool cmp(int x,int y){
11 return sz[x]>sz[y];
12 }
13 void add(int x,int y){
14 edge[E].nex=head[x];
15 edge[E].to=y;
16 head[x]=E++;
17 }
18 void get_sz(int k,int fa){
19 sz[k]=1;
20 for(int i=head[k];i!=-1;i=edge[i].nex)
21 if ((!vis[edge[i].to])&&(edge[i].to!=fa)){
22 get_sz(edge[i].to,k);
23 sz[k]+=sz[edge[i].to];
24 }
25 }
26 void get_rt(int k,int fa,int s){
27 int mx=s-sz[k];
28 for(int i=head[k];i!=-1;i=edge[i].nex)
29 if ((!vis[edge[i].to])&&(edge[i].to!=fa)){
30 get_rt(edge[i].to,k,s);
31 mx=max(mx,sz[edge[i].to]);
32 }
33 if (mx<=s/2)rt=k;
34 }
35 void dfs(int k,int u){
36 get_sz(k,0);
37 get_rt(k,0,sz[k]);
38 get_sz(rt,0);
39 vis[rt]=1;
40 v.clear();
41 for(int i=head[rt];i!=-1;i=edge[i].nex)
42 if (!vis[edge[i].to])v.push_back(edge[i].to);
43 sort(v.begin(),v.end(),cmp);
44 if (v.size()&1)v.push_back(rt);
45 for(int i=0;i<v.size();i+=2){
46 int ans=Query(u,v[i],v[i+1]);
47 if (ans==rt)continue;
48 if ((ans==v[i])||(ans==v[i+1])){
49 dfs(ans,u);
50 return;
51 }
52 int p=v[i];
53 if (Query(u,rt,v[i])==rt)p=v[i+1];
54 add(ans,rt),add(ans,p);
55 for(int j=head[rt];j!=-1;j=edge[j].nex)
56 if (edge[j].to==p){
57 edge[j].to=ans;
58 break;
59 }
60 for(int j=head[p];j!=-1;j=edge[j].nex)
61 if (edge[j].to==rt){
62 edge[j].to=ans;
63 break;
64 }
65 if (ans!=u){
66 add(u,ans);
67 add(ans,u);
68 Vis[ans]=1;
69 }
70 return;
71 }
72 add(rt,u),add(u,rt);
73 }
74 void Solve(int n){
75 memset(head,-1,sizeof(head));
76 for(int i=1;i<n;i++)
77 if (!Vis[i]){
78 memset(vis,0,sizeof(vis));
79 dfs(0,i);
80 }
81 for(int i=0;i<n;i++)
82 for(int j=head[i];j!=-1;j=edge[j].nex)
83 if (i<edge[j].to)Bridge(i,edge[j].to);
84 }
[loj3031]聚会的更多相关文章
- BSD和云 – 不可错过的BSD聚会
自2012年开始,微软云计算与企业事业部和Citrix思杰,NetApp达成合作,共同开发出第一版针对Hyper-V虚拟设备驱动以及相关的用户态程序,并将此称之为集成服务 (Integration S ...
- 【BZOJ-1787&1832】Meet紧急集合&聚会 倍增LCA
1787: [Ahoi2008]Meet 紧急集合 Time Limit: 20 Sec Memory Limit: 162 MBSubmit: 2259 Solved: 1023[Submit] ...
- bzoj-3170 3170: [Tjoi 2013]松鼠聚会(计算几何)
题目链接: 3170: [Tjoi 2013]松鼠聚会 Time Limit: 10 Sec Memory Limit: 128 MB Description 有N个小松鼠,它们的家用一个点x,y表 ...
- DHV 平常语言对话 一次聚会离场
一次聚会离场 一次聚会离场,如果顺路要计划好A女生 和B女生 或者C女闺密一起回去,然后再自己回去 如果别人说:好男人, 自己一定要谦虚说: 哪里,好男人一般都是备胎. 到家了要说: 不是说: 我:我 ...
- BZOJ3170: [Tjoi 2013]松鼠聚会
3170: [Tjoi 2013]松鼠聚会 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 531 Solved: 249[Submit][Statu ...
- bzoj1832: [AHOI2008]聚会
写过的题... #include<cstdio> #include<cstring> #include<iostream> #include<algorith ...
- BZOJ 3170: [Tjoi 2013]松鼠聚会 切比雪夫距离
3170: [Tjoi 2013]松鼠聚会 Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/p ...
- tyvj1161聚会的名单(trie树)
背景 Background 明天就是candy的生日,candy又会邀请自己的一大堆好友来聚会了!哎!又要累坏飘飘乎居士了!! 描述 Description 明天就是candy的生日.晚上,c ...
- BZOJ 1037 [ZJOI2008]生日聚会Party
1037: [ZJOI2008]生日聚会Party Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1583 Solved: 936[Submit][ ...
随机推荐
- redis 5.0.12 install
redis 5.0.12 install ## check directory ls -l /XXXXXXX ##create dir mkdir -p /XXXXXXX/dataredis mkdi ...
- postgresql高可用集群部署
一.概况 1.概念 pgsql高可用集群采用postgresql+etcd+patroni+haproxy+keepalived等软件实现,以postgresql做数据库,etcd存储集群状态,pat ...
- Pytorch——张量 Tensors
张量 Tensors 1.torch.is_tensor torch.is_tensor(obj) 用法:判断是否为张量,如果是 pytorch 张量,则返回 True. 参数:obj (Object ...
- DevOps 时代的高效测试之路
10 月 22 日,2021 届 DevOps 国际峰会在北京顺利召开,来自国内外的顶级技术专家共同畅谈 DevOps 体系与方法.过程与实践.工具与技术.CODING 测试及研发流程管理产品总监程胜 ...
- 4个实验,彻底搞懂TCP连接的断开
前言 看到这个标题你可能会说,TCP 连接的建立与断开,这个我熟,不就是三次握手与四次挥手嘛.且慢,脑海中可以先尝试回答这几个问题: 四次挥手是谁发起的? 如果断电/断网了连接会断开吗? 什么情况下没 ...
- Java:死锁编码及定位分析
Java:死锁编码及定位分析 本笔记是根据bilibili上 尚硅谷 的课程 Java大厂面试题第二季 而做的笔记 概念 死锁是指两个或多个以上的进程在执行过程中,因争夺资源而造成一种互相等待的现象, ...
- Spring Security Resource Server的使用
Spring Security Resource Server的使用 一.背景 二.需求 三.分析 四.资源服务器认证流程 五.实现资源服务器 1.引入jar包 2.资源服务器配置 3.资源 六.测试 ...
- 前端大牛带你了解JavaScript 函数式编程
前言 函数式编程在前端已经成为了一个非常热门的话题.在最近几年里,我们看到非常多的应用程序代码库里大量使用着函数式编程思想. 本文将略去那些晦涩难懂的概念介绍,重点展示在 JavaScript 中到底 ...
- 【做题记录】[NOIP2016 普及组] 魔法阵
P2119 魔法阵 2016年普及组T4 题意: 给定一系列元素 \(\{X_i\}\) ,求满足以下不等式的每一个元素作为 \(a,b,c,d\) 的出现次数 . \[\begin{cases}X_ ...
- Sending and Trapping Signals
http://mywiki.wooledge.org/SignalTrap Signals are a basic tool for asynchronous interprocess communi ...