对于一棵树(初始仅包含节点0),不断加入一个不在树中的节点$u$(不需要随机),并维护这棵树

具体的,对这棵树点分治,假设当前重心$v$有$d$个子树,假设其中第$i$个子树根为$r_{i}$,子树大小为$s_{i}$,且不妨假设子树大小单调不上升(即$s_{1}\ge s_{2}\ge ...\ge s_{d}$)

初始令$i=1$,并询问$(u,r_{2i-1},r_{2i})$,并分类讨论:

1.若$u$在$r_{2i-1}$或$r_{2i}$的子树中,询问结果为$r_{2i-1}$或$r_{2i}$,递归询问结果的子树即可

2.若$u$在$r_{2i-1}$或$r_{2i}$到$v$的路径即其子树中,询问结果为$\ne u,r_{2i-1},r_{2i}$,再询问一次$(u,v,r_{2i-1})$即可

3.若$u$不为上述两种情况,询问结果为$v$,若$2i\ge d$则$u$为$v$的新儿子,否则令$i$增加1并重复此过程

(特别的,若$d$为奇数,我们认为$r_{d+1}=v$,且若为第二种情况,则一定在$r_{d}$到$v$的路径上)

下面,来考虑操作次数:

令$T(n)$为$n$个节点的子树中最大询问次数,考虑$u$结束的情况,即以下三种——

(为了方便,记$D=\min(n-1,18)$,显然$d\le D$)

1.在第一种情况下结束:假设在$i$时结束,则至多需要$T(s_{2i-1})+i$次(由于$s_{2i-1}\ge s_{2i}$)

显然有$\begin{cases}s_{i}\le \lfloor\frac{n}{2}\rfloor&(i=1)\\s_{i}\le \lfloor\frac{n-1}{i}\rfloor&(2\le i\le d)\end{cases}$,也即$T_{1}(n)=\max(T(\lfloor\frac{n}{2}\rfloor)+1,\max_{2\le i\le \lceil\frac{D}{2}\rceil}T(\lfloor\frac{n-1}{2i-1}\rfloor)+i)$

2.在第二种情况下结束:此时即询问$\lceil\frac{d}{2}\rceil+1$,即$T_{2}(n)=\lceil\frac{D}{2}\rceil+1$

3.在第三种情况下结束,此时即询问$\lceil\frac{d}{2}\rceil$次,同理即$T_{3}(n)=\lceil\frac{D}{2}\rceil$

最终$T(n)=\max(T_{1}(n),T_{2}(n),T_{3}(n))$,初始状态为$T(1)=0$(此时将$u$作为该点的儿子即可),最大询问次数为$\sum_{i=1}^{n-1}T(i)$

经过计算,可得在$n=2\times 10^{3}$时,该值为39371(官方题解给出的值是39632),可以通过

 1 #include<bits/stdc++.h>
2 #include "meetings.h"
3 using namespace std;
4 #define N 2005
5 struct Edge{
6 int nex,to;
7 }edge[N<<1];
8 vector<int>v;
9 int E,rt,head[N],vis[N],sz[N],Vis[N];
10 bool cmp(int x,int y){
11 return sz[x]>sz[y];
12 }
13 void add(int x,int y){
14 edge[E].nex=head[x];
15 edge[E].to=y;
16 head[x]=E++;
17 }
18 void get_sz(int k,int fa){
19 sz[k]=1;
20 for(int i=head[k];i!=-1;i=edge[i].nex)
21 if ((!vis[edge[i].to])&&(edge[i].to!=fa)){
22 get_sz(edge[i].to,k);
23 sz[k]+=sz[edge[i].to];
24 }
25 }
26 void get_rt(int k,int fa,int s){
27 int mx=s-sz[k];
28 for(int i=head[k];i!=-1;i=edge[i].nex)
29 if ((!vis[edge[i].to])&&(edge[i].to!=fa)){
30 get_rt(edge[i].to,k,s);
31 mx=max(mx,sz[edge[i].to]);
32 }
33 if (mx<=s/2)rt=k;
34 }
35 void dfs(int k,int u){
36 get_sz(k,0);
37 get_rt(k,0,sz[k]);
38 get_sz(rt,0);
39 vis[rt]=1;
40 v.clear();
41 for(int i=head[rt];i!=-1;i=edge[i].nex)
42 if (!vis[edge[i].to])v.push_back(edge[i].to);
43 sort(v.begin(),v.end(),cmp);
44 if (v.size()&1)v.push_back(rt);
45 for(int i=0;i<v.size();i+=2){
46 int ans=Query(u,v[i],v[i+1]);
47 if (ans==rt)continue;
48 if ((ans==v[i])||(ans==v[i+1])){
49 dfs(ans,u);
50 return;
51 }
52 int p=v[i];
53 if (Query(u,rt,v[i])==rt)p=v[i+1];
54 add(ans,rt),add(ans,p);
55 for(int j=head[rt];j!=-1;j=edge[j].nex)
56 if (edge[j].to==p){
57 edge[j].to=ans;
58 break;
59 }
60 for(int j=head[p];j!=-1;j=edge[j].nex)
61 if (edge[j].to==rt){
62 edge[j].to=ans;
63 break;
64 }
65 if (ans!=u){
66 add(u,ans);
67 add(ans,u);
68 Vis[ans]=1;
69 }
70 return;
71 }
72 add(rt,u),add(u,rt);
73 }
74 void Solve(int n){
75 memset(head,-1,sizeof(head));
76 for(int i=1;i<n;i++)
77 if (!Vis[i]){
78 memset(vis,0,sizeof(vis));
79 dfs(0,i);
80 }
81 for(int i=0;i<n;i++)
82 for(int j=head[i];j!=-1;j=edge[j].nex)
83 if (i<edge[j].to)Bridge(i,edge[j].to);
84 }

[loj3031]聚会的更多相关文章

  1. BSD和云 – 不可错过的BSD聚会

    自2012年开始,微软云计算与企业事业部和Citrix思杰,NetApp达成合作,共同开发出第一版针对Hyper-V虚拟设备驱动以及相关的用户态程序,并将此称之为集成服务 (Integration S ...

  2. 【BZOJ-1787&1832】Meet紧急集合&聚会 倍增LCA

    1787: [Ahoi2008]Meet 紧急集合 Time Limit: 20 Sec  Memory Limit: 162 MBSubmit: 2259  Solved: 1023[Submit] ...

  3. bzoj-3170 3170: [Tjoi 2013]松鼠聚会(计算几何)

    题目链接: 3170: [Tjoi 2013]松鼠聚会 Time Limit: 10 Sec  Memory Limit: 128 MB Description 有N个小松鼠,它们的家用一个点x,y表 ...

  4. DHV 平常语言对话 一次聚会离场

    一次聚会离场 一次聚会离场,如果顺路要计划好A女生 和B女生 或者C女闺密一起回去,然后再自己回去 如果别人说:好男人, 自己一定要谦虚说: 哪里,好男人一般都是备胎. 到家了要说: 不是说: 我:我 ...

  5. BZOJ3170: [Tjoi 2013]松鼠聚会

    3170: [Tjoi 2013]松鼠聚会 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 531  Solved: 249[Submit][Statu ...

  6. bzoj1832: [AHOI2008]聚会

    写过的题... #include<cstdio> #include<cstring> #include<iostream> #include<algorith ...

  7. BZOJ 3170: [Tjoi 2013]松鼠聚会 切比雪夫距离

    3170: [Tjoi 2013]松鼠聚会 Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/p ...

  8. tyvj1161聚会的名单(trie树)

    背景 Background 明天就是candy的生日,candy又会邀请自己的一大堆好友来聚会了!哎!又要累坏飘飘乎居士了!! 描述 Description     明天就是candy的生日.晚上,c ...

  9. BZOJ 1037 [ZJOI2008]生日聚会Party

    1037: [ZJOI2008]生日聚会Party Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1583  Solved: 936[Submit][ ...

随机推荐

  1. redis 5.0.12 install

    redis 5.0.12 install ## check directory ls -l /XXXXXXX ##create dir mkdir -p /XXXXXXX/dataredis mkdi ...

  2. postgresql高可用集群部署

    一.概况 1.概念 pgsql高可用集群采用postgresql+etcd+patroni+haproxy+keepalived等软件实现,以postgresql做数据库,etcd存储集群状态,pat ...

  3. Pytorch——张量 Tensors

    张量 Tensors 1.torch.is_tensor torch.is_tensor(obj) 用法:判断是否为张量,如果是 pytorch 张量,则返回 True. 参数:obj (Object ...

  4. DevOps 时代的高效测试之路

    10 月 22 日,2021 届 DevOps 国际峰会在北京顺利召开,来自国内外的顶级技术专家共同畅谈 DevOps 体系与方法.过程与实践.工具与技术.CODING 测试及研发流程管理产品总监程胜 ...

  5. 4个实验,彻底搞懂TCP连接的断开

    前言 看到这个标题你可能会说,TCP 连接的建立与断开,这个我熟,不就是三次握手与四次挥手嘛.且慢,脑海中可以先尝试回答这几个问题: 四次挥手是谁发起的? 如果断电/断网了连接会断开吗? 什么情况下没 ...

  6. Java:死锁编码及定位分析

    Java:死锁编码及定位分析 本笔记是根据bilibili上 尚硅谷 的课程 Java大厂面试题第二季 而做的笔记 概念 死锁是指两个或多个以上的进程在执行过程中,因争夺资源而造成一种互相等待的现象, ...

  7. Spring Security Resource Server的使用

    Spring Security Resource Server的使用 一.背景 二.需求 三.分析 四.资源服务器认证流程 五.实现资源服务器 1.引入jar包 2.资源服务器配置 3.资源 六.测试 ...

  8. 前端大牛带你了解JavaScript 函数式编程

    前言 函数式编程在前端已经成为了一个非常热门的话题.在最近几年里,我们看到非常多的应用程序代码库里大量使用着函数式编程思想. 本文将略去那些晦涩难懂的概念介绍,重点展示在 JavaScript 中到底 ...

  9. 【做题记录】[NOIP2016 普及组] 魔法阵

    P2119 魔法阵 2016年普及组T4 题意: 给定一系列元素 \(\{X_i\}\) ,求满足以下不等式的每一个元素作为 \(a,b,c,d\) 的出现次数 . \[\begin{cases}X_ ...

  10. Sending and Trapping Signals

    http://mywiki.wooledge.org/SignalTrap Signals are a basic tool for asynchronous interprocess communi ...