TensorFlow分布式详解
每次 TensorFlow 运算都被描述成计算图的形式,允许结构和运算操作配置所具备的自由度能够被分配到各个分布式节点上。计算图可以分成多个子图,分配给服务器集群中的不同节点。
强烈推荐读者阅读论文“Large Scale Distributed Deep Networks”,本文的一个重要成果是证明了分布式随机梯度下降算法(SDG)可以运行,在该算法中,有多个节点在数据分片上并行工作,通过向参数服务器发送更新来异步独立更新梯度。论文摘要引用如下:实验揭示了一些关于大规模非凸优化的令人惊喜的结果。首先,很少应用于非凸问题的异步 SGD 在训练深度网络方面效果很好,特别是在结合 Adagrad 自适应学习率时。
本文本身的一个照片可以很好地解释这一点:

另一个值得阅读的文档是 TensorFlow 白皮书:《Large-Scale Machine Learning on Heterogeneous Distributed Systems》(Martín Abadi等人,2015年11月)。
考虑其中包含的一些示例,可以在下面的图片中看见,左侧显示的是TensorFlow代码片段,右侧显示的是对应的图表:

通过进行本地计算以及在必要时轻松添加计算图远程通信节点,计算图可以被切分覆盖多个节点,前面提到的论文中的图可以很好地解释这个问题:

梯度下降和所有主要的优化器算法可以以集中方式(下图左侧)或分布式方式(下图右侧)进行计算,后者包括一个 master 进程,它与多个提供 GPU 和 CPU 的 worker 相连:

分布式计算可以是同步的(所有 worker 同时更新数据块上的梯度)或异步的(更新不会同时发生),后者通常允许更高的可扩展性,更大的图计算在最优解的收敛方面表现得更好。以下照片同样来自 TensorFlow 白皮书,如果想了解更多,有兴趣的读者看看这篇论文:

TensorFlow分布式详解的更多相关文章
- TensorFlow 安装详解
摘要: 原创出处:www.bysocket.com 泥瓦匠BYSocket 希望转载,保留摘要,谢谢! 『不要把手段当成目标 — <一个瑜伽行者的自传>』 本文提纲 1. 机器学习 2 ...
- Tensorflow BatchNormalization详解:4_使用tf.nn.batch_normalization函数实现Batch Normalization操作
使用tf.nn.batch_normalization函数实现Batch Normalization操作 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考文献 吴恩达deeplearnin ...
- Tensorflow BatchNormalization详解:3_使用tf.layers高级函数来构建带有BatchNormalization的神经网络
Batch Normalization: 使用tf.layers高级函数来构建带有Batch Normalization的神经网络 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考文献 吴 ...
- Tensorflow BatchNormalization详解:2_使用tf.layers高级函数来构建神经网络
Batch Normalization: 使用tf.layers高级函数来构建神经网络 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考文献 吴恩达deeplearningai课程 课程笔 ...
- tensorflow word2vec详解
maybe_download 下载text8.zip.可以手工下载下来.然后指定text8.zip的路径. read_data 解压text8.zip,把数据读入到data中. data是一个长数组, ...
- Tensorflow BatchNormalization详解:1_原理及细节
Batch Normalization: 原理及细节 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考文献 吴恩达deeplearningai课程 课程笔记 Udacity课程 为了标准化 ...
- TensorFlow分布式(多GPU和多服务器)详解
本文介绍有关 TensorFlow 分布式的两个实际用例,分别是数据并行(将数据分布到多个 GPU 上)和多服务器分配. 玩转分布式TensorFlow:多个GPU和一个CPU展示一个数据并行的例子, ...
- 《TensorFlow学习指南深度学习系统构建详解》英文PDF+源代码+部分中文PDF
主要介绍如何使用 TensorFlow 框架进行深度学习系统的构建.涉及卷积神经网络.循环神经网络等核心的技术,并介绍了用于图像数据和文本序列数据的模型.给出了分布式深度学习系统在TensorFlow ...
- Memcached集群/分布式/高可用 及 Magent缓存代理搭建过程 详解
当网站访问量达到一定时,如何做Memcached集群,又如何高可用,是接下来要讨论的问题. 有这么一段文字来描述“Memcached集群” Memcached如何处理容错的? 不处理!:) 在memc ...
随机推荐
- JavaScript 通过身份证号获取出生日期、年龄、性别 、籍贯
JavaScript 通过身份证号获取出生日期.年龄.性别 .籍贯(很全) 效果图: 示例代码: //由于没有写外部JS,所以代码比较长!!! <!DOCTYPE html PUBLIC &qu ...
- 【Jwt】JSON Web Token
一.什么是JSON Web Token: 首先要明确的是JSON Web Token:是一个开放标准,这个标准定义了一种用于简洁,自包含的用于通信双方之间以JSON对象的形式安全传递信息的方法 而我们 ...
- ThreadLocal引起的一次线上事故
> 线上用户存储数据后查看提示无权限 前言 不知道什么时候年轻的我曾一度认为Java没啥难度,没有我实现不了的需求,没有我解不了的bug 直到我遇到至今难忘的一个bug . 线上用户存储数据后查 ...
- 运行程序显示丢失“MSVCR100D.dll”
前言 写了一个Dll注入工具,结果发现程序在其他机器上会出现丢失"MSVCR100D.dll".这个dll是vs2010自带的动态链接库,如果在没安装vs2010运行库的电脑中使用 ...
- MySQL分区表最佳实践
前言: 分区是一种表的设计模式,通俗地讲表分区是将一大表,根据条件分割成若干个小表.但是对于应用程序来讲,分区的表和没有分区的表是一样的.换句话来讲,分区对于应用是透明的,只是数据库对于数据的重新整理 ...
- Java堆的理解
堆的核心概述 所有的对象实例以及数组都应当在运行时分配在堆上 从实际实用角度看 --"几乎所有的对象实例都在堆中分配内存" 数组和对象可能永远不会存储在栈上,因为栈帧中保存引用,这 ...
- vscode 取消 eslint everywhere
vscode装了eslint插件,一不小心点了eslint everywhere 然后任务栏就变成这样了 eslint前面是双钩 不管你打开什么项目,什么工作空间,永远都是默认开启ESlint!!! ...
- traefik ingress Controller使用
Kubernetes Ingress Kubernetes Ingress是路由规则的集合,这些规则控制外部用户如何访问Kubernetes集群中运行的服务. 在Kubernetes中,有三种方式可以 ...
- Linux软件安装管理之——dpkg与apt-*详解 apt命令(dpkg和apt代替rpm)
apt list *python* Nosee123关注赞赏支持 Linux软件安装管理之--dpkg与apt-*详解 [Linux软件安装管理系列]- - 传送门: - -<Linux软件 ...
- 命令stat anaconda-ks.cfg会显示出文件的三种时间状态(已加粗):Access、Modify、Change。这三种时间的区别将在下面的touch命令中详细详解:
7.stat命令 stat命令用于查看文件的具体存储信息和时间等信息,格式为"stat 文件名称". stat命令可以用于查看文件的存储信息和时间等信息,命令stat anacon ...