TensorFlow六种激活函数

每个神经元都必须有激活函数。神经元提供了模拟复杂非线性数据集所必需的非线性特性。该函数取所有输入的加权和,进而生成一个输出信号。把它看作输入和输出之间的转换。使用适当的激活函数,可以将输出值限定在一个定义的范围内。

如果 xi 是第 j 个输入,Wj 是连接第 j 个输入到神经元的权重,b 是神经元的偏置,神经元的输出(在生物学术语中,神经元的激活)由激活函数决定,并且在数学上表示如下:

这里,g 表示激活函数。激活函数的参数 ΣWjxj​+b 被称为神经元的活动。

这里对给定输入刺激的反应是由神经元的激活函数决定的。有时回答是二元的(是或不是)。例如,当有人开玩笑的时候...要么不笑。在其他时候,反应似乎是线性的,例如,由于疼痛而哭泣。有时,答复似乎是在一个范围内。

模仿类似的行为,人造神经元使用许多不同的激活函数。将学习如何定义和使用 TensorFlow 中的一些常用激活函数。

下面认识几种常见的激活函数:

  1. 阈值激活函数:这是最简单的激活函数。在这里,如果神经元的激活值大于零,那么神经元就会被激活;否则,它还是处于抑制状态。下面绘制阈值激活函数的图,随着神经元的激活值的改变在 TensorFlow 中实现阈值激活函数:

上述代码的输出如下图所示:

  1. Sigmoid 激活函数:在这种情况下,神经元的输出由函数
    g(x)=1/(1+exp(-x)) 确定。在 TensorFlow 中,方法是 tf.sigmoid,它提供了 Sigmoid 激活函数。这个函数的范围在 0 到 1 之间:

    在形状上,它看起来像字母 S,因此名字叫 Sigmoid:

  1. 双曲正切激活函数:在数学上,它表示为 (1-exp(-2x)/(1+exp(-2x)))。在形状上,它类似于 Sigmoid
    函数,但是它的中心位置是 0,其范围是从 -1 到 1。TensorFlow 有一个内置函数 tf.tanh,用来实现双曲正切激活函数:

以下是上述代码的输出:

线性激活函数:在这种情况下,神经元的输出与神经元的输入值相同。这个函数的任何一边都不受限制:                                                                                                                                                           

整流线性单元(ReLU)激活函数也被内置在 TensorFlow 库中。这个激活函数类似于线性激活函数,但有一个大的改变:对于负的输入值,神经元不会激活(输出为零),对于正的输入值,神经元的输出与输入值相同:                                                                                                                                                                                                                                                                                                   

以下是 ReLU 激活函数的输出:

  1. Softmax 激活函数是一个归一化的指数函数。一个神经元的输出不仅取决于其自身的输入值,还取决于该层中存在的所有其他神经元的输入的总和。这样做的一个优点是使得神经元的输出小,因此梯度不会过大。数学表达式为 yi =exp(xi​)/Σjexp(xj):

以下是上述代码的输出:

下面我们逐个对上述函数进行解释:

  • 阈值激活函数用于
    McCulloch Pitts 神经元和原始的感知机。这是不可微的,在 x=0 时是不连续的。因此,使用这个激活函数来进行基于梯度下降或其变体的训练是不可能的。
  • Sigmoid 激活函数一度很受欢迎,从曲线来看,它像一个连续版的阈值激活函数。它受到梯度消失问题的困扰,即函数的梯度在两个边缘附近变为零。这使得训练和优化变得困难。
  • 双曲正切激活函数在形状上也是 S 形并具有非线性特性。该函数以 0 为中心,与 Sigmoid 函数相比具有更陡峭的导数。与 Sigmoid 函数一样,它也受到梯度消失问题的影响。
  • 线性激活函数是线性的。该函数是双边都趋于无穷的 [-inf,inf]。它的线性是主要问题。线性函数之和是线性函数,线性函数的线性函数也是线性函数。因此,使用这个函数,不能表示复杂数据集中存在的非线性。
  • ReLU 激活函数是线性激活功能的整流版本,这种整流功能允许其用于多层时捕获非线性。

    使用 ReLU 的主要优点之一是导致稀疏激活。在任何时刻,所有神经元的负的输入值都不会激活神经元。就计算量来说,这使得网络在计算方面更轻便。

    ReLU 神经元存在死亡 ReLU 的问题,也就是说,那些没有激活的神经元的梯度为零,因此将无法进行任何训练,并停留在死亡状态。尽管存在这个问题,但 ReLU 仍是隐藏层最常用的激活函数之一。
  • Softmax 激活函数被广泛用作输出层的激活函数,该函数的范围是 [0,1]。在多类分类问题中,它被用来表示一个类的概率。所有单位输出和总是 1。

总结

神经网络已被用于各种任务。这些任务可以大致分为两类:函数逼近(回归)和分类。根据手头的任务,一个激活函数可能比另一个更好。一般来说,隐藏层最好使用 ReLU 神经元。对于分类任务,Softmax 通常是更好的选择;对于回归问题,最好使用 Sigmoid 函数或双曲正切函数。

TensorFlow六种激活函数的更多相关文章

  1. tensorflow Relu激活函数

    1.Relu激活函数 Relu激活函数(The Rectified Linear Unit)表达式为:f(x)=max(0,x). 2.tensorflow实现 #!/usr/bin/env pyth ...

  2. Tensorflow ActiveFunction激活函数解析

    Active Function 激活函数 原创文章,请勿转载哦~!! 觉得有用的话,欢迎一起讨论相互学习~Follow Me Tensorflow提供了多种激活函数,在CNN中,人们主要是用tf.nn ...

  3. TensorFlow常用激活函数及其特点和用法(6种)详解

    http://c.biancheng.net/view/1911.html 每个神经元都必须有激活函数.它们为神经元提供了模拟复杂非线性数据集所必需的非线性特性.该函数取所有输入的加权和,进而生成一个 ...

  4. TensorFlow从0到1之TensorFlow常用激活函数(19)

    每个神经元都必须有激活函数.它们为神经元提供了模拟复杂非线性数据集所必需的非线性特性.该函数取所有输入的加权和,进而生成一个输出信号.你可以把它看作输入和输出之间的转换.使用适当的激活函数,可以将输出 ...

  5. 05基于python玩转人工智能最火框架之TensorFlow基础知识

    从helloworld开始 mkdir mooc # 新建一个mooc文件夹 cd mooc mkdir 1.helloworld # 新建一个helloworld文件夹 cd 1.helloworl ...

  6. 深度学习的激活函数 :sigmoid、tanh、ReLU 、Leaky Relu、RReLU、softsign 、softplus、GELU

    深度学习的激活函数  :sigmoid.tanh.ReLU .Leaky Relu.RReLU.softsign .softplus.GELU 2019-05-06 17:56:43 wamg潇潇 阅 ...

  7. TensorFlow激活函数+归一化-函数

    激活函数的作用如下-引用<TensorFlow实践>: 这些函数与其他层的输出联合使用可以生成特征图.他们用于对某些运算的结果进行平滑或者微分.其目标是为神经网络引入非线性.曲线能够刻画出 ...

  8. TensorFlow实现的激活函数可视化

    书上的代码: # coding: utf-8 # In[1]: import matplotlib.pyplot as plt import numpy as np import tensorflow ...

  9. SELU︱在keras、tensorflow中使用SELU激活函数

    arXiv 上公开的一篇 NIPS 投稿论文<Self-Normalizing Neural Networks>引起了圈内极大的关注,它提出了缩放指数型线性单元(SELU)而引进了自归一化 ...

随机推荐

  1. 关于js中的回调函数callback,通俗易懂

    前言 其实我一直很困惑关于js 中的callback,困惑的原因是,学习中这块看的资料少,但是平时又经常见,偶尔复制一下前人代码,功能实现了也就不再去追其原由,这么着,这个callback的概念就越来 ...

  2. Vue2.0组件之间通信

    Vue中组件这个特性让不少前端er非常喜欢,我自己也是其中之一,它让前端的组件式开发更加合理和简单.笔者之前有写过一篇Vue2.0子父组件通信,这次我们就来聊一聊平级组件之间的通信. 首先我们先搭好开 ...

  3. Laravel 定时任务 任务调度 可手动执行

    1.创建一个命令 php artisan make:command TestCommand 执行成功后会提示: Console command created successfully. 生成了一个新 ...

  4. 【MySQL】Mysql避免索引失效的情况有哪些

    1.使用多列作为索引,则需要遵循最左前缀匹配原则(查询从索引的最左前列开始并且不跳过索引中的列) 2.不再索引列上做任何操作,例如(计算,函数,(自动 or 手动的类型转换)),会导致索引失效而转向全 ...

  5. CString,string,char数组的转换

    来源:http://ticktick.blog.51cto.com/823160/317550 //----------------ANSI字符串转换为UNICODE字符串-------------- ...

  6. picpick截屏软件脱壳

    0x01 准备 OD 基本查壳软件 picpick可执行文件(不是快捷方式) 0x02 查壳 软件是2018年9月,还是比较新的 显示EP区段是.vmp1,没见过,不知道是压缩壳还是加密壳,搜索所示y ...

  7. 19.Vuex详细使用说明-一篇文章涵盖所有知识点

    vuex官网: https://vuex.vuejs.org/zh/ 一. 前言 不管是Vue,还是 React,都需要管理状态(state),比如组件之间都有共享状态的需要. 什么是共享状态? 比如 ...

  8. SQL注入平台(sqli-labs)搭建提示Fatal error: Uncaught Error:

    笔者搭建该平台时用的是phpstudy,估计wampserver和xmapp也适用 搭建过程中出现错误 在浏览器进入sqli-labs时有以下提示 Fatal error: Uncaught Erro ...

  9. 【python】Leetcode每日一题-颠倒二进制位

    [python]Leetcode每日一题-颠倒二进制位 [题目描述] 颠倒给定的 32 位无符号整数的二进制位. 示例1: 输入: 00000010100101000001111010011100 输 ...

  10. 在AWS Glue中使用Apache Hudi

    1. Glue与Hudi简介 AWS Glue AWS Glue是Amazon Web Services(AWS)云平台推出的一款无服务器(Serverless)的大数据分析服务.对于不了解该产品的读 ...