BSGS

引入

求解关于\(X\)的方程,

\[A^X\equiv B \pmod P
\]

其中\(Gcd(A,P)=1\)

求解

我们令\(X=i*\sqrt{P}-j\),其中\(0<=i,j<=\sqrt{P}\)

则原式可以变为:

\[A^X\equiv B \pmod P
\]
\[A^{i*\sqrt{P}-j}\equiv B \pmod P
\]

由于\(Gcd(A,P)=1\),则可以恒等变化为:

\[A^{i*\sqrt{P}}\equiv B*A^j \pmod P
\]

则我们可以先预处理出所有的\(A^{i*\sqrt{P}}\),存入哈希表。

再枚举\(B*A^j\),在哈希表里查找即可得解。

代码

int quick_Pow(int x,int y,int p){
if(y==0)return 1;
if(y==1)return x;
if(y%2)return 1ll*x*quick_Pow(1ll*x*x%p,y/2,p)%p;
return quick_Pow(1ll*x*x%p,y/2,p);
}
void BSGS(int x,int y,int p){
x%=p;y%=p;
if(x==0&&y!=0){puts("-1");return ;}
if(x==0&&y==0){puts("1");return ;}
if(y==1){puts("0");return ;}
int st=int(sqrt(p))+1;Mp.clear();
for(int i=1,rt=1;i<=st;i++,rt=(1ll*rt*x)%p)Mp[rt]=i;
int sum=quick_Pow(x,st,p);
for(int i=1,rt=1;i<=st;i++){
rt=(1ll*rt*sum)%p;
if(Mp[rt]){
printf("%d\n",i*st-Mp[rt]);
return ;
}
}
puts("-1");
}

ExBSGS

引入

求解关于\(X\)的方程,

\[A^X\equiv B \pmod P
\]

其中\(Gcd(A,P)\)无特殊条件。

由于\(Gcd(A,P)\)可能不为\(1\),所以\(A\)关于\(P\)可能没有逆元。

故不能用一般的 BSGS 求解。

求解

我们设\(D=Gcd(A,P)\),

则显然有 \(\frac{A}{D}\equiv 1\pmod P\)

则原式$$A^X\equiv B \pmod P$$

可恒等变形为$$A^{X-1}\cdot\frac{A}{D}\equiv \frac{B}{D} \pmod {\frac{P}{D}}$$

而由于\(Gcd(\frac{A}{D},\frac{P}{D})=1\),则有

\[A^{X-1}\equiv \frac{B}{D}\cdot({\frac{A}{D}})^{-1} \pmod {\frac{P}{D}}
\]

则此时\(\frac{P}{D}\)就相当于新的\(P\)值,\(\frac{B}{D}\cdot({\frac{A}{D}})^{-1}\)就相当于新的\(B\)值,

就可以这样递推下去了。(注:下一次的\(D\)是新的\(P\)值与\(A\)的\(Gcd\))

考虑边界状态:

①:若当前的\(D=1\),则问题转化为普通的 BSGS。

②:若\(B\)值等于\(1\)了,则迭代到的\(Ans\)值为\(1\)。

③:若\(D \nmid B\),即\(D\)不是\(B\)的因数,则\(\frac{B}{D}\)没有意义,则无解。

综上,出解。

例题及代码

板题

题意:求满足\(A^X\equiv B \pmod{P}\)的最小整数\(X\)

#include<map>
#include<cmath>
#include<cstdio>
#include<algorithm>
#include<tr1/unordered_map>
using namespace std;
#define LL long long
tr1::unordered_map<LL,int>Mp;
LL Gcd(LL x,LL y){
if(x==0)return y;
return Gcd(y%x,x);
}
LL quick_Pow(LL x,LL y,LL p){
if(y==0)return 1;
if(y==1)return x;
if(y%2)return x*quick_Pow(x*x%p,y/2,p)%p;
return quick_Pow(x*x%p,y/2,p);
}
int ExBSGS(int x,int y,int p){
if(y==1)return 0;//特判解为0的情况.
LL k=0,a=1;
while(1){
int d=Gcd(x,p);if(d==1)break;
if(y%d)return -1;
y/=d;p/=d;k++;a=(1ll*a*x/d)%p;
if(a==y)return k;//同特判.
}Mp.clear();
LL st=int(sqrt(p))+1,sum=quick_Pow(x,st,p);
for(LL i=0,rt=y;i<=st;i++,rt=(1ll*rt*x)%p)Mp[rt]=i+1;
for(LL i=1,rt=(a*sum)%p;i<=st;i++,rt=(1ll*rt*sum)%p){//不将求解中的A/D移项.
if(!Mp[rt])continue;
return 1ll*i*st-(Mp[rt]-1)+k;
}
return -1;
}
int A,B,C;
int main(){
while(~scanf("%d%d%d",&A,&B,&C)&&A){
int Ans=ExBSGS(A,C,B);
if(Ans!=-1)printf("%d\n",Ans);
else puts("Orz,I can’t find D!");
}
}

注:一般的,题目所给的A,B,C都是正整数。

关于 BSGS 以及 ExBSGS 算法的理解的更多相关文章

  1. openCV中直方图均衡化算法的理解

    直方图均衡化就是调整灰度直方图的分布,即将原图中的灰度值映射为一个新的值.映射的结果直观表现是灰度图的分布变得均匀,从0到255都有分布,不像原图那样集中.图像上的表现就是对比度变大,亮的更亮,暗的更 ...

  2. SDUT OJ 数据结构实验之串一:KMP简单应用 && 浅谈对看毛片算法的理解

    数据结构实验之串一:KMP简单应用 Time Limit: 1000 ms Memory Limit: 65536 KiB Submit Statistic Discuss Problem Descr ...

  3. POJ1523(割点所确定的连用分量数目,tarjan算法原理理解)

    SPF Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 7406   Accepted: 3363 Description C ...

  4. 【转】浅谈对主成分分析(PCA)算法的理解

    以前对PCA算法有过一段时间的研究,但没整理成文章,最近项目又打算用到PCA算法,故趁热打铁整理下PCA算法的知识.本文观点旨在抛砖引玉,不是权威,更不能尽信,只是本人的一点体会. 主成分分析(PCA ...

  5. Vue中diff算法的理解

    Vue中diff算法的理解 diff算法用来计算出Virtual DOM中改变的部分,然后针对该部分进行DOM操作,而不用重新渲染整个页面,渲染整个DOM结构的过程中开销是很大的,需要浏览器对DOM结 ...

  6. 关于KMP算法中,获取next数组算法的理解

    参考:KMP入门级别算法详解--终于解决了(next数组详解) https://blog.csdn.net/lee18254290736/article/details/77278769 在这里讨论的 ...

  7. React中diff算法的理解

    React中diff算法的理解 diff算法用来计算出Virtual DOM中改变的部分,然后针对该部分进行DOM操作,而不用重新渲染整个页面,渲染整个DOM结构的过程中开销是很大的,需要浏览器对DO ...

  8. 知识点简单总结——BSGS与EXBSGS

    知识点简单总结--BSGS与EXBSGS BSGS 给出 $ A,B,C,(A,C)=1 $ ,要你求最小的 $ x $ ,使得 $ A^x \equiv B(mod \ C) $ . 在数论题中经常 ...

  9. 自己对kmp算法的理解,借由 28. 实现 strStr() 为例

    做题思路 or 感想 : 就借由这道题来理解一下kmp算法吧 kmp算法的操作过程我觉得有句话很合适 :KMP 算法永不回退 目标字符串 的指针 i,不走回头路(不会重复扫描 目标字符串),而是借助 ...

随机推荐

  1. Swoole 协程简介

    什么是协程 协程可以简单理解为线程,只不过这个线程是用户态的,不需要操作系统参与,创建.销毁和切换的成本都非常低. 协程不能利用多核 cpu,想利用多核 cpu 需要依赖 Swoole 的多进程模型. ...

  2. sqoop的使用之import导入到HDFS

    原文链接: https://www.toutiao.com/i6772128429614563843/ 首先我们已经安装好sqoop了,如果没有安装好参考文档<快速搭建CDH-Hadoop-Hi ...

  3. Eclipse配置Maven3.5

    原文: https://www.toutiao.com/i6494558327622599181/ 配置Maven 首先保证Java环境是有的(Maven 3.1以上 要求 JDK 1.6 或以上版本 ...

  4. test_4 实现一个统计函数运行时间

    1.datetime显示当前时间 import datetimeimport timedef func(): t = datetime.datetime.now() print t print &qu ...

  5. [Anti-AV] 从攻防对抗辩证性分析jsp免杀(一)

    从攻防对抗辩证性分析jsp免杀 从最早的最朴素木马 <%@ page import="java.io.InputStream" %> <%@ page impor ...

  6. 关于3G移动通信网络中用户ip的配置过程的研究(中国电信cdma2000)

    在RP口对ppp过程进行研究 PPP协商过程,如下图所示: 在建立ppp过程中pdsn需要与FAAA.HAAA交互.同时在分组数据业务进行过程中这种交互更加频繁,介绍如下,分为两种情况,简单ip,移动 ...

  7. condition_variable中的和wait_once和notify_one及notify_all实例代码

    // ConsoleApplication6.cpp : 定义控制台应用程序的入口点. #include "stdafx.h" #include<thread> #in ...

  8. Python定制化天气预报消息推送

    sansui-Weather 代码码云 介绍 定制化天气预报消息推送(练手小脚本) Python脚本实现天气查询应用,提醒她注意保暖! 功能介绍 天气信息获取 当天天气信息提示 第二天天气信息提示 网 ...

  9. Mac系统U盘制作教程

    您可以将外置驱动器或备用宗卷用作安装 Mac 操作系统的启动磁盘. 以下高级步骤主要适用于系统管理员以及熟悉命令行的其他人员.升级 macOS 或重新安装 macOS 不需要可引导安装器,但如果您要在 ...

  10. 使用Hot Chocolate和.NET 6构建GraphQL应用(2) —— 实体相关功能实现

    系列导航 使用Hot Chocolate和.NET 6构建GraphQL应用文章索引 需求 在本文中,我们将会准备好用于实现GraphQL接口所依赖的底层数据,为下一篇文章具体实现GraphQL接口做 ...