简介

广播描述的是NumPy如何计算不同形状的数组之间的运算。如果是较大的矩阵和较小的矩阵进行运算的话,较小的矩阵就会被广播,从而保证运算的正确进行。

本文将会以具体的例子详细讲解NumPy中广播的使用。

基础广播

正常情况下,两个数组需要进行运算,那么每个数组的对象都需要有一个相对应的值进行计算才可以。比如下面的例子:

a = np.array([1.0, 2.0, 3.0])
b = np.array([2.0, 2.0, 2.0])
a * b
array([ 2., 4., 6.])

但是如果使用Numpy的广播特性,那么就不必须元素的个数准确对应。

比如,我们可以讲一个数组乘以常量:

a = np.array([1.0, 2.0, 3.0])
>>> b = 2.0
>>> a * b
array([ 2., 4., 6.])

下面的例子和上面的例子是等价的,Numpy会自动将b进行扩展。

NumPy足够聪明,可以使用原始标量值而无需实际制作副本,从而使广播操作尽可能地节省内存并提高计算效率。

第二个示例中的代码比第一个示例中的代码更有效,因为广播在乘法过程中移动的内存更少(b是标量而不是数组)。

广播规则

如果两个数组操作,NumPy会对两个数组的对象进行比较,从最后一个维度开始,如果两个数组的维度满足下面的两个条件,我们就认为这两个数组是兼容的,可以进行运算:

  1. 维度中的元素个数是相同的
  2. 其中一个维数是1

如果上面的两个条件不满足的话,就会抛出异常: ValueError: operands could not be broadcast together。

维度中的元素个数是相同的,并不意味着要求两个数组具有相同的维度个数。

比如表示颜色的256x256x3 数组,可以和一个一维的3个元素的数组相乘:

Image  (3d array): 256 x 256 x 3
Scale (1d array): 3
Result (3d array): 256 x 256 x 3

相乘的时候,维度中元素个数是1的会被拉伸到和另外一个维度中的元素个数一致:

A      (4d array):  8 x 1 x 6 x 1
B (3d array): 7 x 1 x 5
Result (4d array): 8 x 7 x 6 x 5

上面的例子中,第二维的1被拉伸到7,第三维的1被拉伸到6,第四维的1被拉伸到5。

还有更多的例子:

B      (1d array):      1
Result (2d array): 5 x 4 A (2d array): 5 x 4
B (1d array): 4
Result (2d array): 5 x 4 A (3d array): 15 x 3 x 5
B (3d array): 15 x 1 x 5
Result (3d array): 15 x 3 x 5 A (3d array): 15 x 3 x 5
B (2d array): 3 x 5
Result (3d array): 15 x 3 x 5 A (3d array): 15 x 3 x 5
B (2d array): 3 x 1
Result (3d array): 15 x 3 x 5

下面是不匹配的例子:

A      (1d array):  3
B (1d array): 4 # trailing dimensions do not match A (2d array): 2 x 1
B (3d array): 8 x 4 x 3 # second from last dimensions mismatched

再举个实际代码的例子:

>>> x = np.arange(4)
>>> xx = x.reshape(4,1)
>>> y = np.ones(5)
>>> z = np.ones((3,4)) >>> x.shape
(4,) >>> y.shape
(5,) >>> x + y
ValueError: operands could not be broadcast together with shapes (4,) (5,) >>> xx.shape
(4, 1) >>> y.shape
(5,) >>> (xx + y).shape
(4, 5) >>> xx + y
array([[ 1., 1., 1., 1., 1.],
[ 2., 2., 2., 2., 2.],
[ 3., 3., 3., 3., 3.],
[ 4., 4., 4., 4., 4.]]) >>> x.shape
(4,) >>> z.shape
(3, 4) >>> (x + z).shape
(3, 4) >>> x + z
array([[ 1., 2., 3., 4.],
[ 1., 2., 3., 4.],
[ 1., 2., 3., 4.]])

广播还提供了一个非常方便的进行两个1维数组进行外部乘积的运算:

>>> a = np.array([0.0, 10.0, 20.0, 30.0])
>>> b = np.array([1.0, 2.0, 3.0])
>>> a[:, np.newaxis] + b
array([[ 1., 2., 3.],
[ 11., 12., 13.],
[ 21., 22., 23.],
[ 31., 32., 33.]])

其中a[:, np.newaxis] 将1维的数组转换成为4维的数组:

In [230]: a[:, np.newaxis]
Out[230]:
array([[ 0.],
[10.],
[20.],
[30.]])

本文已收录于 http://www.flydean.com/07-python-numpy-broadcasting/

最通俗的解读,最深刻的干货,最简洁的教程,众多你不知道的小技巧等你来发现!

欢迎关注我的公众号:「程序那些事」,懂技术,更懂你!

NumPy之:理解广播的更多相关文章

  1. numpy中的广播

    目录 广播的引出 广播的原则 数组维度不同,后缘维度的轴长相符 数组维度相同,其中有个轴为1 参考: 广播的引出  numpy两个数组的相加.相减以及相乘都是对应元素之间的操作. import num ...

  2. numpy中的广播机制

    广播的引出 numpy两个数组的相加.相减以及相乘都是对应元素之间的操作. import numpy as np x = np.array([[2,2,3],[1,2,3]]) y = np.arra ...

  3. Numpy中的广播机制,数组的广播机制(Broadcasting)

    这篇文章把numpy中的广播机制讲的十分透彻: https://jakevdp.github.io/PythonDataScienceHandbook/02.05-computation-on-arr ...

  4. Numpy中的广播原则(机制)

    为了了解这个原则,首先我们来看一组例子: # 数组直接对一个数进行加减乘除,产生的结果是数组中的每个元素都会加减乘除这个数. In [12]: import numpy as np In [13]: ...

  5. numpy中的广播(Broadcasting)

    Numpy的Universal functions 中要求输入的数组shape是一致的,当数组的shape不相等的时候,则会使用广播机制,调整数组使得shape一样,满足规则,则可以运算,否则就出错 ...

  6. numpy.meshgrid()理解

    本文的目的是记录meshgrid()的理解过程: step1. 通过一个示例引入创建网格点矩阵; step2. 基于步骤1,说明meshgrid()的作用; step3. 详细解读meshgrid() ...

  7. 对numpy.meshgrid()理解

    一句话解释numpy.meshgrid()——生成网格点坐标矩阵.关键词:网格点,坐标矩阵 网格点是什么?坐标矩阵又是什么鬼?看个图就明白了: 图中,每个交叉点都是网格点,描述这些网格点的坐标的矩阵, ...

  8. numpy深入理解剖析

    http://www.scipy-lectures.org/advanced/advanced_numpy/index.html

  9. numpy和tensorflow中的广播机制

    广播的引出 numpy两个数组的相加.相减以及相乘都是对应元素之间的操作. import numpy as np x = np.array([[2,2,3],[1,2,3]]) y = np.arra ...

随机推荐

  1. 关于HDFS存储元数据的NameNode持久化存储

    NameNode持久化场景引入: 问题:NameNode宕机,导致内存中的文件元数据丢失怎么办?我们知道元数据是存储来内存中的,所以一旦宕机,内存数据是会丢失的,因此为了避免数据丢失,HDFS中出现了 ...

  2. MAC (Message Authentication Code,消息认证码算法)

    需要将密钥发送到对方,对方用该密钥进行摘要处理,进行摘要验证. //初始化KeyGenerator KeyGenerator keyGenerator= KeyGenerator.getInstanc ...

  3. mysql 统计新增每天数据

    #创建基表 CREATE TABLE `table_sum` (   `id` int(11) NOT NULL AUTO_INCREMENT,   `table_name` varchar(50) ...

  4. shiro太复杂?快来试试这个轻量级权限认证框架!

    前言 在java的世界里,有很多优秀的权限认证框架,如Apache Shiro.Spring Security 等等.这些框架背景强大,历史悠久,其生态也比较齐全. 但同时这些框架也并非十分完美,在前 ...

  5. IPFS挖矿赚钱吗?IPFS挖矿是真的吗?

    IPFS一出现就获得了极高的关注度,「让人类信息永存」的口号也让其蒙上了一层神秘的面纱.今天我就来给大家自剖析,一探IPFS技术的真相. IPFS是一个去中心化存储网络,而Filecoin是IPFS激 ...

  6. 提高ASP.NET Web应用性能的24种方法和技巧

    那性能问题到底该如何解决?以下是应用系统发布前,作为 .NET 开发人员需要检查的点. 1.debug=「false」 当创建 ASP.NET Web应用程序,默认设置为「true」.开发过程中,设置 ...

  7. Android学习中出现的问题

    •问题1:多行文字如何实现跑马灯效果? 博客链接:Androidd Studio 之多行文字跑马灯特效 解决状态:已解决 •问题2:cause: unable to find valid certif ...

  8. Nacos 2.0 正式发布,性能提升了 10 倍!!

    前不久,在3月20号,Nacos 2.0.0 正式发布了!我简单看了下官方的介绍,可能nacos未来逐渐会成为各大公司作为服务治理和配置中心的主要中间件. Nacos 简介:一个更易于构建云原生应用的 ...

  9. Windows下C++/Fortran调用.exe可执行文件

    目录 软件环境 Windows下CMake编译配置 设置项目的generator Command Line CMake GUI PreLoad.cmake 设置make 示例程序 CMake 设置Fo ...

  10. angularjs 图片上传

    <input type="file" file-model="myFile"/><div class="col-md-12" ...