简介

广播描述的是NumPy如何计算不同形状的数组之间的运算。如果是较大的矩阵和较小的矩阵进行运算的话,较小的矩阵就会被广播,从而保证运算的正确进行。

本文将会以具体的例子详细讲解NumPy中广播的使用。

基础广播

正常情况下,两个数组需要进行运算,那么每个数组的对象都需要有一个相对应的值进行计算才可以。比如下面的例子:

a = np.array([1.0, 2.0, 3.0])
b = np.array([2.0, 2.0, 2.0])
a * b
array([ 2., 4., 6.])

但是如果使用Numpy的广播特性,那么就不必须元素的个数准确对应。

比如,我们可以讲一个数组乘以常量:

a = np.array([1.0, 2.0, 3.0])
>>> b = 2.0
>>> a * b
array([ 2., 4., 6.])

下面的例子和上面的例子是等价的,Numpy会自动将b进行扩展。

NumPy足够聪明,可以使用原始标量值而无需实际制作副本,从而使广播操作尽可能地节省内存并提高计算效率。

第二个示例中的代码比第一个示例中的代码更有效,因为广播在乘法过程中移动的内存更少(b是标量而不是数组)。

广播规则

如果两个数组操作,NumPy会对两个数组的对象进行比较,从最后一个维度开始,如果两个数组的维度满足下面的两个条件,我们就认为这两个数组是兼容的,可以进行运算:

  1. 维度中的元素个数是相同的
  2. 其中一个维数是1

如果上面的两个条件不满足的话,就会抛出异常: ValueError: operands could not be broadcast together。

维度中的元素个数是相同的,并不意味着要求两个数组具有相同的维度个数。

比如表示颜色的256x256x3 数组,可以和一个一维的3个元素的数组相乘:

Image  (3d array): 256 x 256 x 3
Scale (1d array): 3
Result (3d array): 256 x 256 x 3

相乘的时候,维度中元素个数是1的会被拉伸到和另外一个维度中的元素个数一致:

A      (4d array):  8 x 1 x 6 x 1
B (3d array): 7 x 1 x 5
Result (4d array): 8 x 7 x 6 x 5

上面的例子中,第二维的1被拉伸到7,第三维的1被拉伸到6,第四维的1被拉伸到5。

还有更多的例子:

B      (1d array):      1
Result (2d array): 5 x 4 A (2d array): 5 x 4
B (1d array): 4
Result (2d array): 5 x 4 A (3d array): 15 x 3 x 5
B (3d array): 15 x 1 x 5
Result (3d array): 15 x 3 x 5 A (3d array): 15 x 3 x 5
B (2d array): 3 x 5
Result (3d array): 15 x 3 x 5 A (3d array): 15 x 3 x 5
B (2d array): 3 x 1
Result (3d array): 15 x 3 x 5

下面是不匹配的例子:

A      (1d array):  3
B (1d array): 4 # trailing dimensions do not match A (2d array): 2 x 1
B (3d array): 8 x 4 x 3 # second from last dimensions mismatched

再举个实际代码的例子:

>>> x = np.arange(4)
>>> xx = x.reshape(4,1)
>>> y = np.ones(5)
>>> z = np.ones((3,4)) >>> x.shape
(4,) >>> y.shape
(5,) >>> x + y
ValueError: operands could not be broadcast together with shapes (4,) (5,) >>> xx.shape
(4, 1) >>> y.shape
(5,) >>> (xx + y).shape
(4, 5) >>> xx + y
array([[ 1., 1., 1., 1., 1.],
[ 2., 2., 2., 2., 2.],
[ 3., 3., 3., 3., 3.],
[ 4., 4., 4., 4., 4.]]) >>> x.shape
(4,) >>> z.shape
(3, 4) >>> (x + z).shape
(3, 4) >>> x + z
array([[ 1., 2., 3., 4.],
[ 1., 2., 3., 4.],
[ 1., 2., 3., 4.]])

广播还提供了一个非常方便的进行两个1维数组进行外部乘积的运算:

>>> a = np.array([0.0, 10.0, 20.0, 30.0])
>>> b = np.array([1.0, 2.0, 3.0])
>>> a[:, np.newaxis] + b
array([[ 1., 2., 3.],
[ 11., 12., 13.],
[ 21., 22., 23.],
[ 31., 32., 33.]])

其中a[:, np.newaxis] 将1维的数组转换成为4维的数组:

In [230]: a[:, np.newaxis]
Out[230]:
array([[ 0.],
[10.],
[20.],
[30.]])

本文已收录于 http://www.flydean.com/07-python-numpy-broadcasting/

最通俗的解读,最深刻的干货,最简洁的教程,众多你不知道的小技巧等你来发现!

欢迎关注我的公众号:「程序那些事」,懂技术,更懂你!

NumPy之:理解广播的更多相关文章

  1. numpy中的广播

    目录 广播的引出 广播的原则 数组维度不同,后缘维度的轴长相符 数组维度相同,其中有个轴为1 参考: 广播的引出  numpy两个数组的相加.相减以及相乘都是对应元素之间的操作. import num ...

  2. numpy中的广播机制

    广播的引出 numpy两个数组的相加.相减以及相乘都是对应元素之间的操作. import numpy as np x = np.array([[2,2,3],[1,2,3]]) y = np.arra ...

  3. Numpy中的广播机制,数组的广播机制(Broadcasting)

    这篇文章把numpy中的广播机制讲的十分透彻: https://jakevdp.github.io/PythonDataScienceHandbook/02.05-computation-on-arr ...

  4. Numpy中的广播原则(机制)

    为了了解这个原则,首先我们来看一组例子: # 数组直接对一个数进行加减乘除,产生的结果是数组中的每个元素都会加减乘除这个数. In [12]: import numpy as np In [13]: ...

  5. numpy中的广播(Broadcasting)

    Numpy的Universal functions 中要求输入的数组shape是一致的,当数组的shape不相等的时候,则会使用广播机制,调整数组使得shape一样,满足规则,则可以运算,否则就出错 ...

  6. numpy.meshgrid()理解

    本文的目的是记录meshgrid()的理解过程: step1. 通过一个示例引入创建网格点矩阵; step2. 基于步骤1,说明meshgrid()的作用; step3. 详细解读meshgrid() ...

  7. 对numpy.meshgrid()理解

    一句话解释numpy.meshgrid()——生成网格点坐标矩阵.关键词:网格点,坐标矩阵 网格点是什么?坐标矩阵又是什么鬼?看个图就明白了: 图中,每个交叉点都是网格点,描述这些网格点的坐标的矩阵, ...

  8. numpy深入理解剖析

    http://www.scipy-lectures.org/advanced/advanced_numpy/index.html

  9. numpy和tensorflow中的广播机制

    广播的引出 numpy两个数组的相加.相减以及相乘都是对应元素之间的操作. import numpy as np x = np.array([[2,2,3],[1,2,3]]) y = np.arra ...

随机推荐

  1. 修饰符static和abstract

    修饰符static和abstract static static可以修饰类中的方法,属性等,被修饰后的方法和属性可以通过类名直接调用也可以通过对象调用.普通的变量只能通过对象进行调用. 静态方法直接可 ...

  2. Codeforces Round #548 C. Edgy Trees

    题面: 传送门 题目描述: 给出有n个节点的树,整数k.题目要求找长度为k,符合规则(good序列)的"点序列"(由节点构成的序列)个数有多少?规则如下: 1.走一条出发点为a1, ...

  3. 2019 GDUT Rating Contest I : Problem A. The Bucket List

    题面: A. The Bucket List Input file: standard input Output file: standard output Time limit: 1 second Me ...

  4. 2019 GDUT Rating Contest III : Problem A. Out of Sorts

    题面: 传送门 A. Out of Sorts Input file: standard input Output file: standard output Time limit: 1 second M ...

  5. Flutter资源

    目录 文章 一开始 HOWTO文档 网站/博客 高级 视频 组件 演示 UI 材料设计 图片 地图 图表 导航 验证 文字和富文本 分析.流量统计 自动构建 风格样式 媒体 音频 视频 语音 存储 获 ...

  6. 围绕 Kubernetes 的 8 大 DevOps 生产关键实践

    本文主要介绍 DevOps 的 8 大关键实践在 Kubernetes 平台下如何落地,结合我们目前基于 Kubernetes 平台的 DevOps 实践谈谈是如何贯彻相关理念的,这里不会对其具体实现 ...

  7. java.net.BindException: Problem binding to [hadoop103:8031] java.net.BindException

    ResourceManger启动失败,Namenode启动成功,这个问题排查了好久 在hadoop-2.7.6/logs/yarn-root-resourcemanager-hadoop102.log ...

  8. Java(195-214)【final、权限、内部类】

    1.final关键字的概念与四种方法 今天是基础学习的最后一天!~ 2.final关键字用来修饰一个类 3.final关键字来修饰成员方法 4.final用于修饰局部变量 package cn.itc ...

  9. 做个开源博客学习Vite2 + Vue3 (三)博客设计和代码设计

    项目搭建好了之后是不是可以编码了呢? 等等不要着急,我们是不是应该先设计一下?比如博客的功能等? 博客设计 先做个简单的个人博客,因为是个人版,所以可以省略注册.登录这些功能,表结构也可以简单一点. ...

  10. All in All UVA - 10340

     You have devised a new encryption technique which encodes a message by inserting between its charac ...