简介

特征工程在机器学习中具有重要意义,但是通过手动创造特征是一个缓慢且艰巨的过程。Python的特征工程库featuretools可以帮助我们简化这一过程。Featuretools是执行自动化特征工程的框架,有两类特征构造的操作:聚合(aggregation)和 转换(transform)。

官方文档:https://docs.featuretools.com/en/stable/index.html
 

示例

版本说明

python 3.7.6
featuretools==0.13.4
scikit-learn==0.22.2.post1

首先,我们得先了解一下featuretools的3个基本组成

  • 实体集(EntitySet):把一个二维表看作一个实体,实体集是一个或多个二维表的集合
  • 特征基元(Feature Primitives):分为聚合和转换两类,相当于构造新特征的方法
  • 深度特征合成(DFS, Deep Feature Synthesis):根据实体集里的实体和特征基元创造新特征

单个数据表

max_depth=1

加载数据

from sklearn.datasets import load_iris
import pandas as pd
import numpy as np
import featuretools as ft dataset = load_iris()
X = dataset.data
y = dataset.target
iris_feature_names = dataset.feature_names df = pd.DataFrame(X, columns=iris_feature_names)

用实体集表示数据集

import featuretools as ft
es = ft.EntitySet(id='single_dataframe') # 用id标识实体集
# 增加一个数据框,命名为iris
es.entity_from_dataframe(entity_id='iris',
dataframe=df,
index='index',
make_index=True)

选择特征基元并自动进行特征工程,我们这里采用加减乘除4个基元,max_depth控制“套娃”的深度,如果是1的话只在原特征上进行,大于1的话不仅会在原来的特征上,还会在其他基元生成的新特征上创造特征,数值越大,允许越深的“套娃”。

trans_primitives=['add_numeric', 'subtract_numeric', 'multiply_numeric', 'divide_numeric']  # 2列相加减乘除来生成新特征
# ft.list_primitives() # 查看可使用的特征集元
feature_matrix, feature_names = ft.dfs(entityset=es,
target_entity='iris',
max_depth=1, # max_depth=1,只在原特征上进行运算产生新特征
verbose=1,
trans_primitives=trans_primitives
)

我们知道加法和乘法满足交换律,而减法和除法不满足,以特征A和B为例,A+B的结果一定等于B+A,但是A-B不一定等于B-A。

按理说,不同基元操作后的总特征数:

加和乘的新特征数+原始特征数,feature_num*(feature_num-1)/2+feature_num,所以这里是4*3/2+4=10
减和除的新特征数+原始特征数,feature_num*(feature_num-1)+feature_num,所以这里是4*3+4=16
10*2+16*2-4*3=40,4*3减去重复的3原始特征3次

0.13.4版本的featuretools中,默认减法满足交换律,因此实际生成的特征会少一些,只有34个特征。

下面是0.13.4版本的featuretools中的代码,subtract_numeric默认开启了交换律,我想因为 A-B = -(B-A) ,可以认为是一个特征,只不过一个是正相关一个是负相关。但是如果max_depth很深,差别会越来越大,如 A+B×(A-B) 和 A+B×(B-A) 

class SubtractNumeric(TransformPrimitive):
name = "subtract_numeric"
input_types = [Numeric, Numeric]
return_type = Numeric def __init__(self, commutative=True):
self.commutative = commutative
...

如果想要全部特征,可以创建一个subtract_numeric的实例,让commutative参数为False,这时就会有40个特征了,这是预期的结果。

trans_primitives=['add_numeric', ft.primitives.SubtractNumeric(commutative=False), 'multiply_numeric', 'divide_numeric']
feature_matrix, feature_names = ft.dfs(entityset=es,
target_entity='iris',
max_depth=1,
verbose=1,
trans_primitives=trans_primitives
)

自动特征工程后,可能会出现 np.inf 和 np.nan 这样的异常值,我们需要处理这些异常数据。其中 np.inf 可能是由 n/0 导致的,np.nan 可能是由 0/0 导致的。

feature_matrix.replace([np.inf, -np.inf], np.nan)  # np.inf都用np.nan代替
feature_matrix.isnull().sum()

max_depth不为1

如果我们的max_depth不为1,要知道特征基元的顺序是会带来影响的。另外就是如果max_depth数值大,特征基元多的话特征工程后的维度会迅速膨胀。下面的两个例子中,原来的特征只有4个,让max_depth为2且只用2个特征基元后特征就有100+了。

先乘再除

feat_matrix, feat_names = ft.dfs(entityset=es,
target_entity='iris',
max_depth=2,
verbose=1,
trans_primitives=['multiply_numeric', 'divide_numeric'],
)
# 乘法基元处理后特征数(包含原特征)一共有4*3/2+4=10个
# 除法基元会在乘法处理后的10个特征上,进行除法操作,所以这样会有10*9+10=100个特征

先除再乘

feat_matrix, feat_names = ft.dfs(entityset=es,
target_entity='iris',
max_depth=2,
verbose=1,
trans_primitives=['divide_numeric', 'multiply_numeric']
)
# 除法基元处理后特征数(包含原特征)一共有4*3+4=16个
# 同样地,乘法在这16个特征上进行操作,会有16*15/2+16=136个特征

多个数据表

我们这里自定义2个数据表来表示。其中df_2中id就是df_1中的id

df_1 = pd.DataFrame({'id':[0,1,2,3], 'a':[1,2,2,3], 'b':[2,4,4,5]})
df_2 = pd.DataFrame({'id':[0,1,1,2,3], 'c':[1,3,3,2,5], 'd':[5,6,7,9,8]}) es = ft.EntitySet(id='double_dataframe')
es.entity_from_dataframe(entity_id='df_1', # 增加一个数据框
dataframe=df_1,
index='id')
es.entity_from_dataframe(entity_id='df_2', # 增加一个数据框
dataframe=df_2,
index='index',
make_index=True)
# 通过 id 关联 df_1 和 df_2 实体
relation = ft.Relationship(es['df_1']['id'], es['df_2']['id'])
es = es.add_relationship(relation)

聚合基元 sum 和 median 会将df_2中相同“id”的数据进行相加和取中位数的操作

trans_primitives=['add_numeric']
agg_primitives=['sum', 'median']
feature_matrix, feature_names = ft.dfs(entityset=es,
target_entity='df_1',
max_depth=1,
verbose=1,
agg_primitives=agg_primitives,
trans_primitives=trans_primitives)

浅谈自动特征构造工具Featuretools的更多相关文章

  1. 【转】浅谈自动特征构造工具Featuretools

    转自https://www.cnblogs.com/dogecheng/p/12659605.html 简介 特征工程在机器学习中具有重要意义,但是通过手动创造特征是一个缓慢且艰巨的过程.Python ...

  2. 浅谈独立特征(independent features)、潜在特征(underlying features)提取、以及它们在网络安全中的应用

    1. 关于特征提取 0x1:什么是特征提取 特征提取研究的主要问题是,如何在数据集未明确表示结果的前提下,从中提取出重要的潜在特征来.和无监督聚类一样,特征提取算法的目的不是为了预测,而是要尝试对数据 ...

  3. 浅谈maven自动化构建工具

    转载https://blog.csdn.net/zxm1306192988/article/details/76209062 Maven是什么[what] 1.Maven 是 Apache 软件基金会 ...

  4. 浅谈Webpack模块打包工具三

    Source Map 生产代码与开发代码完全不同,如果需要调试应用的话会非常的麻烦,错误信息无法定位,Soutce Map就会逆向得到源代码, 须在打包之后的代码文件的末尾位置例如添加//# sour ...

  5. 浅谈如何使用swfupload工具与struts2无缝相接

    笔者在网上查找流行的上传组件,swfupload引入眼帘,受到JavaEye的一篇文章启发,历时三天,加以研究,现将心得奉上,献礼JavaEye. 由于笔者才疏学浅,经验匮乏,介绍不深入,仅供菜鸟参考 ...

  6. 浅谈ABB机器人(工具坐标,工件坐标,有效载荷)

    工具坐标(tool): 使tcl坐标偏移到工具上,例如焊接工作,使机器人工作点切入焊枪点上 mass:工具的重量 xyz:偏移距离的大小 验证:通过手动模式,切换至自定义工具,重定向 工件坐标(wob ...

  7. 浅谈Webpack模块打包工具一

    为什么要使用模块打包工具 1.模块化开发ES Modules存在兼容性问题 打包之后成产阶段编译为ES5 解决兼容性问题 2.模块文件过多 网络请求频繁  开发阶段把散的模块打包成一个模块 解决网络请 ...

  8. 浅谈Webpack模块打包工具四

    Webpack 生产环境优化 生产环境和开发环境有很大的差异,生产环境只注重运行效率,开发环境主要开发效率,webpack4.0开始提出了(mode)模式的概念 针对不同的环境进行不同的配置,为不同的 ...

  9. 开发工具--浅谈Git

    工具|浅谈Git Git这个工具,是我一直想写文章,终于我实现了我的想法.在我开始写之前,发表一下自己的看法,git只是一个工具,既然已经认定是一个工具,那么一定具备工具这类的共同特征,请用面向对象的 ...

随机推荐

  1. java集合框架部分相关接口与类的介绍

    集合基础 接口 Iterable //Implementing this interface allows an object to be the target of the "for-ea ...

  2. 【Linux学习笔记1】-centos6.9部署django

    一,centos6.9部署django ​ 部署套件:centos6.9+nginx+mysql+uwsgi+python3+django ​ 首先还是要明白这几个部分之间的关系(自己也是初学者,希望 ...

  3. 普通 Javaweb项目模板的搭建

    普通 Javaweb项目模板的搭建 1. 创建一个web项目模板的maven项目 2.配置 Tomcat 服务器 3.先测试一下该空项目 4.注入 maven 依赖 5.创建项目的包结构 6.编写基础 ...

  4. tasker支持的shell 命令大全

    参考 http://www.notenoughtech.com/tasker/tasker-run-shell-commands/   罗列所有系统配置项 settings list system s ...

  5. windows认证解读

    0x00 本地认证 本地认证基础知识 在本地登录Windows的情况下,操作系统会使用用户输入的密码作为凭证去与系统中的密码进行验证,但是操作系统中的密码存储在哪里呢? %SystemRoot%\sy ...

  6. 【近取 key】NABCD分析

    项目 内容 这个作业属于哪个课程 2021春季计算机学院软件工程(罗杰 任健) 这个作业的要求在哪里 团队项目-NABCD分析 我在这个课程的目标是 提升工程能力和团队意识,熟悉软件开发的流程 这个作 ...

  7. Android+Spring Boot 选择+上传+下载文件

    2021.02.03更新 1 概述 前端Android,上传与下载文件,使用OkHttp处理请求,后端使用Spring Boot,处理Android发送来的上传与下载请求.这个其实不难,就是特别多奇奇 ...

  8. JRebel激活

    邮箱随便填,URL为 https://jrebel.qekang.com/ 加上UUID,比如 https://jrebel.qekang.com/2c0c926f-5664-4d0e-afe2-60 ...

  9. Java多线程编程(同步、死锁、生产消费者问题)

    Java多线程编程(同步.死锁.生产消费): 关于线程同步以及死锁问题: 线程同步概念:是指若干个线程对象并行进行资源的访问时实现的资源处理保护操作: 线程死锁概念:是指两个线程都在等待对方先完成,造 ...

  10. 通过Python实现对SQL Server 数据文件大小的监控告警

    1.需求背景 系统程序突然报错,报错信息如下: The transaction log for database '@dbname' is full. To find out why space in ...