题意:

5种操作,所有数字都为0或1

0 a b:将[a,b]置0

1 a b:将[a,b]置1

2 a b:[a,b]中的0和1互换

3 a b:查询[a,b]中的1的数量

4 a b:查询[a,b]中的最长连续1串的长度

这题看题目就很裸,综合了区间更新,区间合并

我一开始把更新操作全放一个变量,但是在push_down的时候很麻烦,情况很多,容易漏,后来改成下面的

更新的操作可以分为两类,一个是置值(stv),一个是互换(swp)。如果stv!=-1,则更新儿子节点的stv,并将儿子的swp=0。如果swp=1,这里要注意一点,不是把儿子的swp赋值为1,而是与1异或!!!因为如果儿子的swp本为1,再互换一次,两个互换就相当于值没有变了。

注意下细节就行了

#include <bits/stdc++.h>
#define lson l, m, rt<<1
#define rson m+1, r, rt<<1|1
using namespace std; const int MAXN = 111111; struct Node
{
int num1, stv, swp;
int mx0, lmx0, rmx0;
int mx1, lmx1, rmx1;
} tr[MAXN<<2]; void changeto(int rt, int to,int len)
{
tr[rt].mx0 = tr[rt].lmx0 = tr[rt].rmx0 = to? 0 : len;
tr[rt].mx1 = tr[rt].lmx1 = tr[rt].rmx1 = tr[rt].num1 = to? len : 0;
} void exchange(int rt, int len)
{
tr[rt].num1 = len - tr[rt].num1;
swap(tr[rt].mx0, tr[rt].mx1);
swap(tr[rt].lmx0, tr[rt].lmx1);
swap(tr[rt].rmx0, tr[rt].rmx1);
} void push_down(int rt, int len)
{
if(tr[rt].stv != -1)
{
tr[rt<<1].stv = tr[rt<<1|1].stv = tr[rt].stv;
tr[rt<<1].swp = tr[rt<<1|1].swp = 0;
changeto(rt<<1, tr[rt].stv, len-(len>>1));
changeto(rt<<1|1, tr[rt].stv, len>>1);
tr[rt].stv = -1;
}
if(tr[rt].swp == 1)
{
tr[rt<<1].swp ^= 1;
tr[rt<<1|1].swp ^= 1;
exchange(rt<<1, len-(len>>1));
exchange(rt<<1|1, len>>1);
tr[rt].swp = 0;
}
} void push_up(int rt, int len)
{
tr[rt].num1 = tr[rt<<1].num1 + tr[rt<<1|1].num1; tr[rt].lmx0 = tr[rt<<1].lmx0;
tr[rt].rmx0 = tr[rt<<1|1].rmx0;
if(tr[rt].lmx0 == len - (len >> 1)) tr[rt].lmx0 += tr[rt<<1|1].lmx0;
if(tr[rt].rmx0 == len >> 1) tr[rt].rmx0 += tr[rt<<1].rmx0;
tr[rt].mx0 = max(tr[rt<<1].rmx0 + tr[rt<<1|1].lmx0, max(tr[rt<<1].mx0, tr[rt<<1|1].mx0)); tr[rt].lmx1 = tr[rt<<1].lmx1;
tr[rt].rmx1 = tr[rt<<1|1].rmx1;
if(tr[rt].lmx1 == len - (len >> 1)) tr[rt].lmx1 += tr[rt<<1|1].lmx1;
if(tr[rt].rmx1 == len >> 1) tr[rt].rmx1 += tr[rt<<1].rmx1;
tr[rt].mx1 = max(tr[rt<<1].rmx1 + tr[rt<<1|1].lmx1, max(tr[rt<<1].mx1, tr[rt<<1|1].mx1));
} void build(int l, int r, int rt)
{
tr[rt].stv = -1;
tr[rt].swp = 0;
if(l == r)
{
scanf("%d", &tr[rt].num1);
tr[rt].mx0 = tr[rt].lmx0 = tr[rt].rmx0 = tr[rt].num1 ^ 1;
tr[rt].mx1 = tr[rt].lmx1 = tr[rt].rmx1 = tr[rt].num1;
return;
}
int m = (l + r) >> 1;
build(lson);
build(rson);
push_up(rt, r-l+1);
} void update(int L, int R, int op, int l, int r, int rt)
{
if(L <= l && r <= R)
{
if(op == 0 || op == 1)
{
changeto(rt, op, r-l+1);
tr[rt].stv = op;
tr[rt].swp = 0;
}
else
{
exchange(rt, r-l+1);
tr[rt].swp ^= 1;
}
return;
}
push_down(rt, r-l+1);
int m = (l + r) >> 1;
if(m >= L) update(L, R, op, lson);
if(m < R) update(L, R, op, rson);
push_up(rt, r-l+1);
} int query1(int L, int R, int l, int r, int rt)
{
if(L <= l && r <= R) return tr[rt].num1;
push_down(rt, r-l+1);
int m = (l + r) >> 1;
int ret = 0;
if(m >= L) ret += query1(L, R, lson);
if(m < R) ret += query1(L, R, rson);
return ret;
} int query2(int L, int R, int l, int r, int rt)
{
if(L <= l && r <= R) return tr[rt].mx1;
push_down(rt, r-l+1);
int m = (l + r) >> 1;
int ret = 0;
if(m >= L) ret = max(ret, query2(L, R, lson));
if(m < R) ret = max(ret, query2(L, R, rson));
ret = max(ret, min(tr[rt<<1].rmx1, m-L+1) + min(tr[rt<<1|1].lmx1, R-m));
return ret;
} int main()
{
// freopen("in.txt", "r", stdin);
int T;
scanf("%d", &T);
while(T--)
{
int n, m;
scanf("%d%d", &n, &m);
build(0, n-1, 1);
while(m--)
{
int op, x, y;
scanf("%d%d%d", &op, &x, &y);
if(op <= 2) update(x, y, op, 0, n-1, 1);
else if(op == 3) printf("%d\n", query1(x, y, 0, n-1, 1));
else printf("%d\n", query2(x, y, 0, n-1, 1));
}
}
return 0;
}

hdu 3397 Sequence operation 线段树 区间更新 区间合并的更多相关文章

  1. hdu 3397 Sequence operation (线段树 区间合并 多重标记)

    链接:http://acm.hdu.edu.cn/showproblem.php?pid=3397 题意: 给你一串01串,有5种操作 0. 区间全部变为0 1.区间全部变为1 2.区间异或 3.询问 ...

  2. hdu 3397 Sequence operation 线段树

    题目链接 给出n个数, 每个数是0或1, 给5种操作, 区间变为1, 区间变为0, 区间0,1翻转, 询问区间内1的个数, 询问区间内最长连续1的个数. 需要将数组开成二维的, 然后区间0, 1翻转只 ...

  3. HDU 3397 Sequence operation(线段树)

    HDU 3397 Sequence operation 题目链接 题意:给定一个01序列,有5种操作 0 a b [a.b]区间置为0 1 a b [a,b]区间置为1 2 a b [a,b]区间0变 ...

  4. HDU.1394 Minimum Inversion Number (线段树 单点更新 区间求和 逆序对)

    HDU.1394 Minimum Inversion Number (线段树 单点更新 区间求和 逆序对) 题意分析 给出n个数的序列,a1,a2,a3--an,ai∈[0,n-1],求环序列中逆序对 ...

  5. hdu 1166线段树 单点更新 区间求和

    敌兵布阵 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submis ...

  6. POJ.3321 Apple Tree ( DFS序 线段树 单点更新 区间求和)

    POJ.3321 Apple Tree ( DFS序 线段树 单点更新 区间求和) 题意分析 卡卡屋前有一株苹果树,每年秋天,树上长了许多苹果.卡卡很喜欢苹果.树上有N个节点,卡卡给他们编号1到N,根 ...

  7. POJ.2299 Ultra-QuickSort (线段树 单点更新 区间求和 逆序对 离散化)

    POJ.2299 Ultra-QuickSort (线段树 单点更新 区间求和 逆序对 离散化) 题意分析 前置技能 线段树求逆序对 离散化 线段树求逆序对已经说过了,具体方法请看这里 离散化 有些数 ...

  8. hdu 3397 Sequence operation(很有意思的线段树题)

    Sequence operation Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Othe ...

  9. HDU 3577Fast Arrangement(线段树模板之区间增减更新 区间求和查询)

    Fast Arrangement Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) ...

随机推荐

  1. Linux基本原则

    Bash特性 Shell shell(外壳),广义的shell可以理解为是用户的工作环境,在windows看来桌面就是一个shell,在linux看来终端就是shell 常见的shell有两种,一种是 ...

  2. Flume 常用配置项

    注:以下配置项均为常见配置项,查询详细配置项可以访问 flume 官网 Source 常见配置项 Avro Source 配置项名称 默认值 描述 Channel – type – 组件类型名称,必须 ...

  3. 025.Python面向对象以及对对象的操作

    一 面向对象基本概念 1.1 OOP面向对象的程序开发 用几大特征表达一类事物称为一个类,类更像是一张图纸,表达只是一个抽象概念 对象是类的具体实现,更像是由这图纸产出的具体物品,类只有一个,但是对象 ...

  4. 10.27-Redis-mz 深入浅出Redis

    深入浅出Redis 1.Redis的发展史     Redis[Remote Directory Server]:远程服务器字典 2.下载安装Redis 1>Linux下安装Reids     ...

  5. python3 使用random函数批量产生注册邮箱

    '''你是一个高级测试工程师,现在要做性能测试,需要你写一个函数,批量生成一些注册使用的账号. 1.产生的账号是以@163.com结尾,长度由用户输,产生多少条也由用户输入,2.用户名不能重复,用户名 ...

  6. 手机POS机

    资质查询 http://www.pbc.gov.cn/zhengwugongkai/127924/128041/2951606/1923625/1923629/d6d180ae/index4.html ...

  7. 面试侃集合 | SynchronousQueue公平模式篇

    面试官:呦,小伙子来的挺早啊! Hydra:那是,不能让您等太久了啊(别废话了快开始吧,还赶着去下一场呢). 面试官:前面两轮表现还不错,那我们今天继续说说队列中的SynchronousQueue吧. ...

  8. 201871030138-杨蕊媛 实验二 个人项目—《D{0-1}背包问题》项目报告

    项目 内容 课程班级博客链接 https://edu.cnblogs.com/campus/xbsf/2018CST 这个作业要求链接 https://www.cnblogs.com/nwnu-dai ...

  9. 摄像头ISP系统原理(下)

    摄像头ISP系统原理(下) l  WDR(Wide Dynamic Range)------宽动态 动态范围(Dynamic Range)是指摄像机支持的最大输出信号和最小输出信号的比值,或者说图像最 ...

  10. 图像分类:CVPR2020论文解读

    图像分类:CVPR2020论文解读 Towards Robust Image Classification Using Sequential Attention Models 论文链接:https:// ...