Madry A, Makelov A, Schmidt L, et al. Towards Deep Learning Models Resistant to Adversarial Attacks.[J]. arXiv: Machine Learning, 2017.

@article{madry2017towards,

title={Towards Deep Learning Models Resistant to Adversarial Attacks.},

author={Madry, Aleksander and Makelov, Aleksandar and Schmidt, Ludwig and Tsipras, Dimitris and Vladu, Adrian},

journal={arXiv: Machine Learning},

year={2017}}

利用特定的方法产生"坏"样本(Adversarial samples), 以此来促进网络的稳定性是当下的热点之一, 本文以实验为主, 比较PGD( projected gradient descent) 和 FGSM(fast gradient sign method)在不同数据下的表现, 以及由普通样本产生"坏"样本会出现的一些现象.

主要内容

Adversarial attacks 主要聚焦于下列问题:

\[\tag{2.1}
\min_{\theta} \rho (\theta) \quad where \quad \rho(\theta) =\mathbb{E}_{(x,y)\sim D}[\max_{\delta \in S} L(\theta, x+\delta, y)].
\]

其中\(S\)是我们指定的摄动集合, 直接一点就是\(|\delta| <constant\)之类.

通过FGSM产生"坏"样本:

\[x + \epsilon \: \mathrm{sgn}(\nabla_x L(\theta,x,y)).
\]

这个思想是很直接的(从线性感知器谈起, 具体看here).

PGD的思路是, 给定摄动集\(S\), 比如小于某个常数的摄动(e.g. \(\{\tilde{x}:\|x-\tilde{x}\|_{\infty}<c\}\)), 多次迭代寻找合适的adversarial samples:

\[x^{t+1} = \prod_{x+S} (x^t + \alpha \: \mathrm{sgn} (\nabla_x L(\theta,x, y)),
\]

其中\(\prod\)表示投影算子, 假设\(S=\{\tilde{x}:\|x-\tilde{x}\|_{\infty}<c\}\),

\[x^{t+1} = \arg \min_{z \in x+S} \frac{1}{2} \|z - (x^t + \alpha \: \mathrm{sgn} (\nabla_x L(\theta,x, y))\|_2^2,
\]

实际上, 可以分开讨论第\((i,j)\)个元素, \(y:=(x^t + \alpha \: \mathrm{sgn} (\nabla_x L(\theta,x, y))\), 只需找到\(z_{ij}\)使得

\[\|z_{ij}-y_{ij}\|_2
\]

最小即可. 此时有显示解为:

\[z_{ij}=
\left \{
\begin{array}{ll}
x_{ij} +c & y_{ij} > x_{ij}+c \\
x_{ij} -c & y_{ij} < x_{ij}-c \\
y_{ij} & else.
\end{array} \right.
\]

简而言之就是一个截断.

重复几次, 至到\(x^t\)被判断的类别与初始的\(x\)不同或者达到最大迭代次数.

Note

  • 如果我们训练网络能够免疫PGD的攻击, 那么其也能很大一部分其它的攻击.
  • FGSM对抗训练不能提高网络的稳定性(在摄动较大的时候).
  • weak models may fail to learn non-trival classfiers.
  • 网络越强(参数等程度)训练出来的稳定性越好, 同时可转移(指adversarial samples 在多个网络中被误判)会变差.

Towards Deep Learning Models Resistant to Adversarial Attacks的更多相关文章

  1. How to Grid Search Hyperparameters for Deep Learning Models in Python With Keras

    Hyperparameter optimization is a big part of deep learning. The reason is that neural networks are n ...

  2. a Javascript library for training Deep Learning models

    w强化算法和数学,来迎接机器学习.神经网络. http://cs.stanford.edu/people/karpathy/convnetjs/ ConvNetJS is a Javascript l ...

  3. Run Your Tensorflow Deep Learning Models on Google AI

    People commonly tend to put much effort on hyperparameter tuning and training while using Tensoflow& ...

  4. What are some good books/papers for learning deep learning?

    What's the most effective way to get started with deep learning?       29 Answers     Yoshua Bengio, ...

  5. (转) Awesome Deep Learning

    Awesome Deep Learning  Table of Contents Free Online Books Courses Videos and Lectures Papers Tutori ...

  6. (转)分布式深度学习系统构建 简介 Distributed Deep Learning

    HOME ABOUT CONTACT SUBSCRIBE VIA RSS   DEEP LEARNING FOR ENTERPRISE Distributed Deep Learning, Part ...

  7. The Brain vs Deep Learning Part I: Computational Complexity — Or Why the Singularity Is Nowhere Near

    The Brain vs Deep Learning Part I: Computational Complexity — Or Why the Singularity Is Nowhere Near ...

  8. Paper Reading——LEMNA:Explaining Deep Learning based Security Applications

    Motivation: The lack of transparency of the deep  learning models creates key barriers to establishi ...

  9. Coursera Deep Learning 2 Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization - week1, Assignment(Regularization)

    声明:所有内容来自coursera,作为个人学习笔记记录在这里. Regularization Welcome to the second assignment of this week. Deep ...

随机推荐

  1. day07 MySQL索引事务

    day07 MySQL索引事务 昨日内容回顾 pymysql模块 # 链接数据库都是使用这个模块的 # 创建链接 import pymysql conn = pymysql.connect( host ...

  2. Spark集群环境搭建——Hadoop集群环境搭建

    Spark其实是Hadoop生态圈的一部分,需要用到Hadoop的HDFS.YARN等组件. 为了方便我们的使用,Spark官方已经为我们将Hadoop与scala组件集成到spark里的安装包,解压 ...

  3. flink02------1.自定义source 2. StreamingSink 3 Time 4窗口 5 watermark

    1.自定义sink 在flink中,sink负责最终数据的输出.使用DataStream实例中的addSink方法,传入自定义的sink类 定义一个printSink(),使得其打印显示的是真正的ta ...

  4. Android Https相关完全解析

    转载: 转载请标明出处: http://blog.csdn.net/lmj623565791/article/details/48129405: 本文出自:[张鸿洋的博客] 一.概述 其实这篇文章理论 ...

  5. Android Loader异步装载

    一.Loader简介: (一).Loader的概念: 装载器从android3.0开始引进.它使得在activity或fragment中异步加载数据变得简单. 当成批显示数据的时候,为了使用户体验更好 ...

  6. CentOS 7.3安装完整开发环境

    系统版本CentOS 7.3(1611) 安装开发环境1) 通过group安装 yum groups mark install "Development Tools" yum gr ...

  7. Dubbo管控平台

    2019年初,官方发布了Dubbo管理控制台0.1版本.结构上采取了前后端分离的方式,前端使用Vue和Vuetify分别作为Javascript框架和UI框架,后端采用Spring Boot框架 一. ...

  8. Gitlab Flow到容器

    一.简介 长话短说,本文全景呈现我司项目组gitlab flow && devops Git Flow定义了一个项目发布的分支模型,为管理具有预定发布周期的大型项目提供了一个健壮的框架 ...

  9. *CTF pwn write up

    第一次做出XCTF的题目来,感谢wjh师傅的指点,虽然只做出一道最简单的pwn题,但是还是挺开心的.此贴用来记录一下,赛后试着看看其他大师傅的wp,看看能不能再做出一道题来. babyheap 程序有 ...

  10. 12 - Vue3 UI Framework - 打包发布

    基础组件库先做到这个阶段,后面我会继续新增.完善 接下来,我们对之前做的组件进行打包发布到 npm 返回阅读列表点击 这里 组件库优化 通用层叠样式表 我想大家都注意到了,前面我们在写组件的时候,sc ...