Laurent T, Von Brecht J H. Deep linear networks with arbitrary loss: All local minima are global[C]. international conference on machine learning, 2018: 2902-2907.

问题

这篇文章是关于深度学习的一些理论分析.

假设这么一个网络:

\[\hat{y}^{(i)}=W_LW_{L-1}\cdots W_1 x^{(i)}.
\]

其中\(x\)是输入,\(W_k\)是第\(k\)层的权重,而\(\hat{y}\)是最后的输出. 没错,这篇文章研究的是深度线性网络的性质(没有激活函数). 当然,这样子,无论有多少层,这个网络最后是一个普通线性函数,所以,作者的本意应该只是借此来窥探深度学习的一些性质.

作者证明了,在满足一定条件下,这个深度线性网络,任何局部最优解都是全局最优解.

假设和重要结果

损失函数如此表示:

\[\mathcal{L}(W_1, \ldots, W_L)=\frac{1}{N} \sum_{i=1}^N \ell (\hat{y}^{(i)}, y^{(i})
\]

假设

  1. \(d_k\)表示第\(k+1\)层的神经元个数,即\(d_0\)表示输入层的维度,\(W_k \in \mathbb{R}^{d_{k-1} \times d_k}\), \(d_L\)表示输出层的维度,
  2. \(d_k \ge \min \{d_0, d_L\}, 0 < k < L\),
  3. 损失函数关于\(\hat{y}\)凸且可微.

定理1:满足上面假设的深度线性网络,任意局部最优都是全局最优.

考虑下面问题p(2):

\[\min \quad f(W_LW_{L-1}\cdots W_1),
\]

并记\(A=W_LW_{L-1}\cdots W_1\).

则:

定理3:

假设\(f(A)\)是任意的可微函数,且满足:

\[\min \{d_1, \ldots, d_{L-1}\} \ge \min \{d_0, d_L\},
\]

则关于p(2)的任意的极小值点\((\hat{W}_1, \ldots, \hat{W}_L)\),都将满足:

\[\nabla f(\hat{A})=0 \quad \hat{A} := \hat{W}_L \hat{W}_{L-1}\cdots \hat{W}_1.
\]

证明

注意到, 可表示成:

\[\mathcal{L} (W_1, \ldots, W_L)=f(W_L\cdots W_1).
\]

则\(f(A)\)是关于\(A\)的凸的可微函数(注意是关于\(A\)), 所以,当\(\nabla f(\hat{A})=0\)的时候,\(\hat{A}\)便是\(f\),即\(\mathcal{L}\)得最小值点. 这意味着,只要我们证明了定理3,也就证明了定理1.

下证定理3:

首先定义:

记:

\[F(W_1, \ldots, W_L) := f(W_L \cdots W_1).
\]

容易证明(这部分论文中也给出了证明,不在此贴出):



其中:



不失一般性,假设\(d_L\ge d_0\), 因为令:

\[g(A) := f(A^T)
\]

则,\(g\)定义在\(d_0 \times d_L\)之上,且\(A^T\)使得\(f\)为极小值,当且仅当\(A\)使得\(g\)为极小值,所以\(d_0, d_L\)的地位是相同的,我们可以直接假设\(d_L \ge d_0\).

\((\hat{W}_1, \ldots, \hat{W}_L)\)是最小值点,则存在\(\epsilon>0\), 使得满足:



的点满足:

于是:



当\(\mathrm{ker}(\hat{W}_{L-1}) = \{0\}\)的时候:

\[\nabla f(\hat{A})=0.
\]

于是只要证明, \(\ker(\hat{W}_{L-1}) = \not \{0\}\)的时候,上式也成立即可.

我们的想法是构造一族极小值点, 满足:

\[\widetilde{A}=A,
\]

通过一些性质,推出\(\nabla f(\hat{A})=0\).

首先证明,满足:



的点都是极小值点.

因为:



所以:



所以\((\tilde{W}_1, \ldots, \tilde{W}_L)\)也是一个极小值点.

那么如何来构造呢?

可知:



对\(\hat{W}_{k, -}\)进行奇异值分解:



因为\(d_k \ge d_0, k\ge1\), 所以其分解是这样的:



注意到,这里体现了为什么需要\(d_k\ge \min \{d_L, d_0\}\), 否则\(\mathrm{ker}(\hat{W}_{k, -})\)不可能等于\(\{0\}\)(因为其秩永远小于\(d_0\)).

假设\(k_*\)是第一个\(\mathrm{ker}(\hat{W}_{k, -}) = \not\{0\}\)的,则下面的构造便是我们所需要的:



其中\(\hat{u}_{k-1}\)表示\(\hat{W}_{k-1, -}\)奇异值分解\(\hat{U}_{k-1}\)的\(d_0\)列, 很明显,满足\(\hat{u}_{k-1}^T\hat{W}_{k-1,-}=0, k\ge k^* + 1\).

条件(8)容易证明,用数学归纳法证明(9):

第一项成立,假设第\(k\)项也成立, 于是



也成立,所以条件成立.

既然满足其构造方式的所有点都是点都是极小值点,那么:



注意,对所有的满足条件的\(\delta_k, w_k\)都成立.

\(k_* > 1\)的时候可得:



又\(\mathrm{ker}(\hat{W}_{k_*-1,-})=\{0\}\), 所以:



注意到\(k_*=1\)的时候,也有上面的形式.

首先,令\(\delta_{k_*+1}=0\), 则\(\tilde{W}_{k_*+1}=\hat{W}_{k_*+1}\), 于是:



在去任意\(\delta_{k_*+1} > 0\), 与上式作差可得:



俩边同乘上\(\hat{u}_{k_*}^T\)可得:



因为\(w_{k_*+1}\)是任意的,所以,左端为0,以此类推,最后可得:

\[\nabla f(\tilde{A})=\nabla f(\hat{A})=0.
\]

证毕.

我没有把定理2放上来.

有一个方向,定理3中的极小值点改成极大值点,似乎定理也成立,即:

假设\(f(A)\)是任意的可微函数,且满足:

\[\min \{d_1, \ldots, d_{L-1}\} \ge \min \{d_0, d_L\},
\]

则关于p(2)的任意的极大值点\((\hat{W}_1, \ldots, \hat{W}_L)\),都将满足:

\[\nabla f(\hat{A})=0 \quad \hat{A} := \hat{W}_L \hat{W}_{L-1}\cdots \hat{W}_1.
\]

我自己仿照论文的证明是可以证明出来的,不过,既然\(\nabla f(\hat{A})=0\), 那么\(\hat{A}\)依然是\(\mathcal{L}\)的最小值点,是不是可以这么认为,\(f\)压根没有存粹的极大值点.

另外作者指出,极小值点不能改为驻点,因为\(A=0\)便是一个驻点,但是没有\(f(0)\)必须为0的规定.

此外作者还说明了,为什么要可微等等原因,详情回见论文.

Deep Linear Networks with Arbitrary Loss: All Local Minima Are Global的更多相关文章

  1. Must Know Tips/Tricks in Deep Neural Networks

    Must Know Tips/Tricks in Deep Neural Networks (by Xiu-Shen Wei)   Deep Neural Networks, especially C ...

  2. Must Know Tips/Tricks in Deep Neural Networks (by Xiu-Shen Wei)

    http://lamda.nju.edu.cn/weixs/project/CNNTricks/CNNTricks.html Deep Neural Networks, especially Conv ...

  3. Training (deep) Neural Networks Part: 1

    Training (deep) Neural Networks Part: 1 Nowadays training deep learning models have become extremely ...

  4. [C4] Andrew Ng - Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization

    About this Course This course will teach you the "magic" of getting deep learning to work ...

  5. Training Deep Neural Networks

    http://handong1587.github.io/deep_learning/2015/10/09/training-dnn.html  //转载于 Training Deep Neural ...

  6. Introduction to Deep Neural Networks

    Introduction to Deep Neural Networks Neural networks are a set of algorithms, modeled loosely after ...

  7. Classifying plankton with deep neural networks

    Classifying plankton with deep neural networks The National Data Science Bowl, a data science compet ...

  8. [CVPR 2016] Weakly Supervised Deep Detection Networks论文笔记

    p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 13.0px "Helvetica Neue"; color: #323333 } p. ...

  9. Coursera Deep Learning 2 Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization - week1, Assignment(Initialization)

    声明:所有内容来自coursera,作为个人学习笔记记录在这里. Initialization Welcome to the first assignment of "Improving D ...

随机推荐

  1. web必知,多终端适配

    导读 移动端适配,是我们在开发中经常会遇到的,这里面可能会遇到非常多的问题: 1px问题 UI图完美适配方案 iPhoneX适配方案 横屏适配 高清屏图片模糊问题 ... 上面这些问题可能我们在开发中 ...

  2. 【leetcode】378. Kth Smallest Element in a Sorted Matrix(TOP k 问题)

    Given an n x n matrix where each of the rows and columns is sorted in ascending order, return the kt ...

  3. deque、queue和stack深度探索(下)

    deque如何模拟连续空间?通过源码可以看到这个模型就是通过迭代器来完成. 迭代器通过重载操作符+,-,++,--,*和->来实现deque连续的假象,如上图中的 finish-start ,它 ...

  4. sql技巧(增册改查)

    1 select * from wyl.t; 2 --将数据从t1导入t2 3 insert into t2(c1,c2) select c1,c2 from t1 where c1= xx and ...

  5. Linux服务器---drupal

    Drupal Drupal为用户提供各种工具来管理网站,它可以帮助用户入门,建立自己的网站 1.下载drupal软件(https://www.drupal.org/project/drupal/rel ...

  6. Linux_spool命令

    spool的作用是什么? spool的作用可以用一句话来描述:在sqlplus中用来保存或打印查询结果. 参数指南 对于SPOOL数据的SQL,最好要自己定义格式,以方便程序直接导入,SQL语句如: ...

  7. 强化学习实战 | 表格型Q-Learning玩井子棋(三)优化,优化

    在 强化学习实战 | 表格型Q-Learning玩井字棋(二)开始训练!中,我们让agent"简陋地"训练了起来,经过了耗费时间的10万局游戏过后,却效果平平,尤其是初始状态的数值 ...

  8. 回溯——51. N皇后

    这一题在我刚开始拿到的时候,是一点思路都没有的,只能先分析题目的要求,即queen之间的规则: 不能同行 不能同列 不能同斜线 不能同左斜 不能同右斜 同时发现,在寻找所有可能结果的穷举过程中,传入的 ...

  9. 编译工具ant部署

    目录 一.环境准备 二.安装 三.使用验证 一.环境准备 当前环境:centos7.3一台 软件版本:ant-1.9 部署目录:/usr/local/ant yum依赖 yum -y java-1.8 ...

  10. 编译工具grdle部署

    目录 一.简介 二.部署 三.测试 一.简介 Gradle 是以 Groovy 语言为基础,面向Java应用为主.基于DSL(领域特定语言)语法的自动化构建工具.在github上,gradle项目很多 ...