import os
import torch
import pandas as pd
from skimage import io, transform
import numpy as np
import matplotlib.pyplot as plt
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms, utils
# Ignore warnings
import warnings
warnings.filterwarnings("ignore")

载入图片和坐标

landmarks_frame = pd.read_csv('data/faces/face_landmarks.csv')
n=65
img_name = landmarks_frame.iloc[n, 0] #获取图片的名称
landmarks = landmarks_frame.iloc[n, 1:].as_matrix() #获取点的位置
landmarks = landmarks.astype('float').reshape(-1, 2)
landmarks_frame.iloc[:3, :] #展示一下csv里面的格式
.dataframe tbody tr th:only-of-type { vertical-align: middle }
{ vertical-align: top }
.dataframe thead th { text-align: right }

image_name part_0_x part_0_y part_1_x part_1_y part_2_x part_2_y part_3_x part_3_y part_4_x ... part_63_x part_63_y part_64_x part_64_y part_65_x part_65_y part_66_x part_66_y part_67_x part_67_y
0 0805personali01.jpg 27 83 27 98 29 113 33 127 39 ... 93 136 100 141 93 135 89 135 84 134
1 1084239450_e76e00b7e7.jpg 70 236 71 257 75 278 82 299 90 ... 148 311 179 308 149 312 137 314 128 312
2 10comm-decarlo.jpg 66 114 65 128 67 142 68 156 72 ... 128 162 136 167 127 166 121 165 116 164

3 rows × 137 columns

接下来,是如何展示图片,以及把点画在图片之上

def show_landmarks(image, landmarks):
fig, ax = plt.subplots()
ax.imshow(image)
ax.scatter(landmarks[:, 0], landmarks[:, 1], s=10, marker='.', c='r')
plt.pause(0.001) #暂停让图片更新?
plt.show() show_landmarks(io.imread(os.path.join('data/faces/', img_name)),
landmarks)

torch.utils.data.Dataset是一个抽象基类表示一个数据集,我们需要为其设定__len__方法和__getitem__方法.

class FaceLandmarksDataset(Dataset):
def __init__(self, csv_file, root_dir, transform=None):
self.landmarks_frame = pd.read_csv(csv_file)
self.root_dir = root_dir
self.transform = transform def __len__(self):
return len(self.landmarks_frame) def __getitem__(self, idx):
img_name = os.path.join(self.root_dir,
self.landmarks_frame.iloc[idx, 0])
image = io.imread(img_name)
landmarks = self.landmarks_frame.iloc[idx, 1:]
landmarks = np.array([landmarks])
landmarks = landmarks.astype('float').reshape(-1, 2)
sample = {'image': image, 'landmarks': landmarks} if self.transform:
sample = self.transform(sample) return sample

利用这个类,我们来展示一下前4幅图像

face_dataset = FaceLandmarksDataset(csv_file='data/faces/face_landmarks.csv',
root_dir='data/faces/') def show_landmarks(image, landmarks):
plt.imshow(image)
plt.scatter(landmarks[:, 0], landmarks[:, 1], s=10, marker='.', c='r')
plt.pause(0.001) #暂停让图片更新? fig = plt.figure()
for i in range(len(face_dataset)):
sample = face_dataset[i]
print(i, sample['image'].shape, sample['landmarks'].shape) ax = plt.subplot(1, 4, i+1)
plt.tight_layout()
ax.set_title("Sample #{}".format(i))
ax.axis("off")
show_landmarks(**sample)
if i == 3:
plt.show()
break
0 (324, 215, 3) (68, 2)

1 (500, 333, 3) (68, 2)

2 (250, 258, 3) (68, 2)

3 (434, 290, 3) (68, 2)

Transforms

很多时候,我们需要对图片进行一些变化,比方说大小的调整等等

利用函子(_call_)能够很好很方便对图片进行处理

class Rescale(object):
"""Rescale the image in a sample to a given size. Args:
output_size (tuple or int): Desired output size. If tuple, output is
matched to output_size. If int, smaller of image edges is matched
to output_size keeping aspect ratio the same.
""" def __init__(self, output_size):
assert isinstance(output_size, (int, tuple)) #output_size应当是一个整数或者元组
self.output_size = output_size def __call__(self, sample):
image, landmarks = sample['image'], sample['landmarks'] h, w = image.shape[:2]
if isinstance(self.output_size, int): #如果是一个整数,那么缩放的逻辑是要保持比例
if h > w:
new_h, new_w = self.output_size * h / w, self.output_size
else:
new_h, new_w = self.output_size, self.output_size * w / h
else: #否则就直接等于就好了
new_h, new_w = self.output_size new_h, new_w = int(new_h), int(new_w) img = transform.resize(image, (new_h, new_w)) # h and w are swapped for landmarks because for images,
# x and y axes are axis 1 and 0 respectively
landmarks = landmarks * [new_w / w, new_h / h] #坐标也要相应改变大小 return {'image': img, 'landmarks': landmarks}
class RandomCrop(object): #随机裁剪,但是实际上是一整块来的
"""Crop randomly the image in a sample. Args:
output_size (tuple or int): Desired output size. If int, square crop
is made.
""" def __init__(self, output_size):
assert isinstance(output_size, (int, tuple))
if isinstance(output_size, int):
self.output_size = (output_size, output_size)
else:
assert len(output_size) == 2
self.output_size = output_size def __call__(self, sample):
image, landmarks = sample['image'], sample['landmarks'] h, w = image.shape[:2]
new_h, new_w = self.output_size top = np.random.randint(0, h - new_h)
left = np.random.randint(0, w - new_w) image = image[top: top + new_h,
left: left + new_w] landmarks = landmarks - [left, top] return {'image': image, 'landmarks': landmarks}
class ToTensor(object):
"""Convert ndarrays in sample to Tensors.""" def __call__(self, sample):
image, landmarks = sample['image'], sample['landmarks'] # swap color axis because
# numpy image: H x W x C
# torch image: C X H X W
image = image.transpose((2, 0, 1)) #把ndarray转换为tensor需要改变顺序
return {'image': torch.from_numpy(image),
'landmarks': torch.from_numpy(landmarks)}

Compose transforms

利用torchvision.transforms.Compose可以帮助我们对一个图片进行多个操作

scale = Rescale(256)
crop = RandomCrop(128)
composed = transforms.Compose([Rescale(256),
RandomCrop(224)]) # Apply each of the above transforms on sample.
fig = plt.figure()
sample = face_dataset[65]
for i, tsfrm in enumerate([scale, crop, composed]):
transformed_sample = tsfrm(sample) ax = plt.subplot(1, 3, i + 1)
plt.tight_layout()
ax.set_title(type(tsfrm).__name__)
show_landmarks(**transformed_sample) plt.show()



数据集的迭代

我们可以用 for ... in ... 来迭代数据集,但是这么做并不方便,因为很多时候训练神经网络是要分批和打乱顺序的torch.utils.data.DataLoader可以帮助我们完成这一个目标

transformed_dataset = FaceLandmarksDataset(csv_file='data/faces/face_landmarks.csv',
root_dir='data/faces/',
transform=transforms.Compose([
Rescale(256),
RandomCrop(224),
ToTensor()
]))
dataloader = DataLoader(transformed_dataset, batch_size=4,
shuffle=True, num_workers=0) #batch_size: batch的大小 shuffle=True表示顺序打乱
def show_landmarks_batch(sample_batched):
"""Show image with landmarks for a batch of samples."""
images_batch, landmarks_batch = \
sample_batched['image'], sample_batched['landmarks']
batch_size = len(images_batch)
im_size = images_batch.size(2)
grid_border_size = 2 grid = utils.make_grid(images_batch) #为图片加入边框
plt.imshow(grid.numpy().transpose((1, 2, 0))) for i in range(batch_size):
plt.scatter(landmarks_batch[i, :, 0].numpy() + i * im_size + (i + 1) * grid_border_size, #既然图片加了边框,而且并排放置,所以我们需要把这部分加上去
landmarks_batch[i, :, 1].numpy() + grid_border_size,
s=10, marker='.', c='r') plt.title('Batch from dataloader')
for i_batch, sample_batched in enumerate(dataloader):
print(i_batch, sample_batched['image'].size(),
sample_batched['landmarks'].size()) if i_batch == 0:
plt.figure()
show_landmarks_batch(sample_batched)
plt.axis('off')
plt.ioff()
plt.show()
break
0 torch.Size([4, 3, 224, 224]) torch.Size([4, 68, 2])
224

Pytorch 图片载入的更多相关文章

  1. Cocos2d-x 3.0心得(01)-图片载入与混合模式

    近期開始用cocos2dx 3.0做东西,略有心(cao)得(dian),略微作下记录吧. v3.0相对v2.2来说,最引人注意的,应该是对触摸层级的优化.和lambda回调函数的引入(嗯嗯.不枉我改 ...

  2. [深度应用]·实战掌握PyTorch图片分类简明教程

    [深度应用]·实战掌握PyTorch图片分类简明教程 个人网站--> http://www.yansongsong.cn/ 项目GitHub地址--> https://github.com ...

  3. Android图片载入框架最全解析(一),Glide的基本使用方法

    转载请注明出处:http://blog.csdn.net/guolin_blog/article/details/53759439 本文同步发表于我的微信公众号.扫一扫文章底部的二维码或在微信搜索 郭 ...

  4. Android批量图片载入经典系列——afinal框架实现图片的异步缓存载入

    一.问题描写叙述 在之前的系列文章中,我们使用了Volley和Xutil框架实现图片的缓存载入,接下来我们再介绍一下afinal 框架的使用. Afinal 是一个android的http框架.sql ...

  5. 一个方便的图片载入框架——ImageViewEx

    我的博客:http://mrfufufu.github.io/ 一.前言 近期在整理项目中的一些代码,以备即将开展的新项目中使用,刚刚整理到一个图片载入的 lib.用起来很的简单,和 picasso ...

  6. Android Handler 异步消息处理机制的妙用 创建强大的图片载入类

    转载请标明出处:http://blog.csdn.net/lmj623565791/article/details/38476887 ,本文出自[张鸿洋的博客] 近期创建了一个群.方便大家交流,群号: ...

  7. Android图片载入缓存框架Glide

    Glide开源框架是Google推荐的图片载入和缓框架,其在Github上的开源地址是:https://github.com/bumptech/glide 当然一个Google推荐的框架肯定就是Vol ...

  8. 安卓图片载入之使用universalimageloader载入圆形圆角图片

    前言 话说这universalimageloader载入图片对搞过2年安卓程序都是用烂了再熟悉只是了.就是安卓新手也是百度就会有一大堆东西出来,今天为什么这里还要讲使用universalimagelo ...

  9. Universal-Image-Loader(UIL)图片载入框架使用简介

    这个也是近期项目中使用到的第三方图片载入框架.在这里也自己总结一下,简单的介绍一些使用的方式. UIL图片载入框架特点 简单介绍: 项目地址:https://github.com/nostra13/A ...

随机推荐

  1. A Child's History of England.31

    The English in general were on King Henry's side, though many of the Normans were on Robert's. But t ...

  2. EBS 抓trace 文件

    如果要对FORM的操作做TRACE操作,可以使用 帮助->诊断->跟踪 中启用跟踪功能来实现. 但是如果要实现对并发请求的trace,需要在 系统管理员->并发->方案-> ...

  3. spring boot 配置属性值获取注解@Value和@ConfigurationProperties比较

    功能比较 :     @ConfigurationProperties  @Value  映射赋值 批量注入配置文件中的属性 一个个指定 松散绑定(松散语法)① 支持 不支持 SpEL② 不支持 支持 ...

  4. Spring Batch Event Listeners

    Learn to create and configure Spring batch's JobExecutionListener (before and after job), StepExecut ...

  5. maven常用命令(待补充)

    1.mvn clean 删除已经编译好的信息 2.mvn compile 编译src/main/java目录下的.java文件 3.mvn test 编译src/main/java和src/test/ ...

  6. 机器学习——可视化绘图matplotlib和seaborn

    安装matplotlib和seaborn https://blog.csdn.net/Jia_jinjin/article/details/80428598 seaborn pairplot:特征两两 ...

  7. linux基本操作命令2

    复制文件 格式: cp [参数] [ 被复制的文件路径] [ 复制的文件路径] -r :递归复制  (需要复制文件夹时使用) 案例:将/root目录下的test文件夹及其内部的文件复制到/tmp中 [ ...

  8. 【划重点】Python遍历列表的四种方法

    一.通过for循环直接遍历 user1 = ["宋江","林冲","卢俊义","吴用"] for user in use ...

  9. STM32F103ZET6 核心板制作指引

    学点啥系列之 --STM32F103ZET6 核心板制作指引 原创资料,转载请联系 作者的话:会画stm32F103ZET6的话,rct6啥的简直不要太简单 一.电路总览 图1:电路整体 二.单片机部 ...

  10. Jetpack Compose的Modifier顺序问题

    一:前言 困惑起源于这段代码 Composable.clickable(点击1).clickable(点击2).size(100.dp).size(200.dp){ ............... } ...