摘要:本文将演示如果序列化生成avro数据,并使用FlinkSQL进行解析。

本文分享自华为云社区《【技术分享】Apache Avro数据的序列化、反序列&&FlinkSQL解析Avro数据》,作者: 南派三叔。

技术背景

随着互联网高速的发展,云计算、大数据、人工智能AI、物联网等前沿技术已然成为当今时代主流的高新技术,诸如电商网站、人脸识别、无人驾驶、智能家居、智慧城市等等,不仅方面方便了人们的衣食住行,背后更是时时刻刻有大量的数据在经过各种各样的系统平台的采集、清晰、分析,而保证数据的低时延、高吞吐、安全性就显得尤为重要,Apache Avro本身通过Schema的方式序列化后进行二进制传输,一方面保证了数据的高速传输,另一方面保证了数据安全性,avro当前在各个行业的应用越来越广泛,如何对avro数据进行处理解析应用就格外重要,本文将演示如果序列化生成avro数据,并使用FlinkSQL进行解析。

本文是avro解析的demo,当前FlinkSQL仅适用于简单的avro数据解析,复杂嵌套avro数据暂时不支持。

场景介绍

本文主要介绍以下三个重点内容:

  • 如何序列化生成Avro数据
  • 如何反序列化解析Avro数据
  • 如何使用FlinkSQL解析Avro数据

前提条件

  • 了解avro是什么,可参考apache avro官网快速入门指南
  • 了解avro应用场景

操作步骤

1、新建avro maven工程项目,配置pom依赖

pom文件内容如下:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion> <groupId>com.huawei.bigdata</groupId>
<artifactId>avrodemo</artifactId>
<version>1.0-SNAPSHOT</version>
<dependencies>
<dependency>
<groupId>org.apache.avro</groupId>
<artifactId>avro</artifactId>
<version>1.8.1</version>
</dependency>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>4.12</version>
</dependency>
</dependencies> <build>
<plugins>
<plugin>
<groupId>org.apache.avro</groupId>
<artifactId>avro-maven-plugin</artifactId>
<version>1.8.1</version>
<executions>
<execution>
<phase>generate-sources</phase>
<goals>
<goal>schema</goal>
</goals>
<configuration>
<sourceDirectory>${project.basedir}/src/main/avro/</sourceDirectory>
<outputDirectory>${project.basedir}/src/main/java/</outputDirectory>
</configuration>
</execution>
</executions>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<configuration>
<source>1.6</source>
<target>1.6</target>
</configuration>
</plugin>
</plugins>
</build> </project>

注意:以上pom文件配置了自动生成类的路径,即${project.basedir}/src/main/avro/和${project.basedir}/src/main/java/,这样配置之后,在执行mvn命令的时候,这个插件就会自动将此目录下的avsc schema生成类文件,并放到后者这个目录下。如果没有生成avro目录,手动创建一下即可。

2、定义schema

使用JSON为Avro定义schema。schema由基本类型(null,boolean, int, long, float, double, bytes 和string)和复杂类型(record, enum, array, map, union, 和fixed)组成。例如,以下定义一个user的schema,在main目录下创建一个avro目录,然后在avro目录下新建文件 user.avsc :

{"namespace": "lancoo.ecbdc.pre",
"type": "record",
"name": "User",
"fields": [
{"name": "name", "type": "string"},
{"name": "favorite_number", "type": ["int", "null"]},
{"name": "favorite_color", "type": ["string", "null"]}
]
}

3、编译schema

点击maven projects项目的compile进行编译,会自动在创建namespace路径和User类代码

4、序列化

创建TestUser类,用于序列化生成数据

User user1 = new User();
user1.setName("Alyssa");
user1.setFavoriteNumber(256);
// Leave favorite col or null // Alternate constructor
User user2 = new User("Ben", 7, "red"); // Construct via builder
User user3 = User.newBuilder()
.setName("Charlie")
.setFavoriteColor("blue")
.setFavoriteNumber(null)
.build(); // Serialize user1, user2 and user3 to disk
DatumWriter<User> userDatumWriter = new SpecificDatumWriter<User>(User.class);
DataFileWriter<User> dataFileWriter = new DataFileWriter<User>(userDatumWriter);
dataFileWriter.create(user1.getSchema(), new File("user_generic.avro"));
dataFileWriter.append(user1);
dataFileWriter.append(user2);
dataFileWriter.append(user3);
dataFileWriter.close();

执行序列化程序后,会在项目的同级目录下生成avro数据

user_generic.avro内容如下:

Objavro.schema�{"type":"record","name":"User","namespace":"lancoo.ecbdc.pre","fields":[{"name":"name","type":"string"},{"name":"favorite_number","type":["int","null"]},{"name":"favorite_color","type":["string","null"]}]}
至此avro数据已经生成。

5、反序列化

通过反序列化代码解析avro数据

// Deserialize Users from disk
DatumReader<User> userDatumReader = new SpecificDatumReader<User>(User.class);
DataFileReader<User> dataFileReader = new DataFileReader<User>(new File("user_generic.avro"), userDatumReader);
User user = null;
while (dataFileReader.hasNext()) {
// Reuse user object by passing it to next(). This saves us from
// allocating and garbage collecting many objects for files with
// many items.
user = dataFileReader.next(user);
System.out.println(user);
}

执行反序列化代码解析user_generic.avro

avro数据解析成功。

6、将user_generic.avro上传至hdfs路径

hdfs dfs -mkdir -p /tmp/lztest/
hdfs dfs -put user_generic.avro /tmp/lztest/

7、配置flinkserver

  • 准备avro jar包

将flink-sql-avro-*.jar、flink-sql-avro-confluent-registry-*.jar放入flinkserver lib,将下面的命令在所有flinkserver节点执行

cp /opt/huawei/Bigdata/FusionInsight_Flink_8.1.2/install/FusionInsight-Flink-1.12.2/flink/opt/flink-sql-avro*.jar /opt/huawei/Bigdata/FusionInsight_Flink_8.1.3/install/FusionInsight-Flink-1.12.2/flink/lib
chmod 500 flink-sql-avro*.jar
chown omm:wheel flink-sql-avro*.jar

  • 同时重启FlinkServer实例,重启完成后查看avro包是否被上传
hdfs dfs -ls /FusionInsight_FlinkServer/8.1.2-312005/lib

8、编写FlinkSQL

CREATE TABLE testHdfs(
name String,
favorite_number int,
favorite_color String
) WITH(
'connector' = 'filesystem',
'path' = 'hdfs:///tmp/lztest/user_generic.avro',
'format' = 'avro'
);CREATE TABLE KafkaTable (
name String,
favorite_number int,
favorite_color String
) WITH (
'connector' = 'kafka',
'topic' = 'testavro',
'properties.bootstrap.servers' = '96.10.2.1:21005',
'properties.group.id' = 'testGroup',
'scan.startup.mode' = 'latest-offset',
'format' = 'avro'
);
insert into
KafkaTable
select
*
from
testHdfs;

保存提交任务

9、查看对应topic中是否有数据

FlinkSQL解析avro数据成功。

点击关注,第一时间了解华为云新鲜技术~

一文解析Apache Avro数据的更多相关文章

  1. Kafka:ZK+Kafka+Spark Streaming集群环境搭建(二十九):推送avro格式数据到topic,并使用spark structured streaming接收topic解析avro数据

    推送avro格式数据到topic 源代码:https://github.com/Neuw84/structured-streaming-avro-demo/blob/master/src/main/j ...

  2. Apache Avro:一个新的数据交换格式

    原文: http://blog.cloudera.com/blog/2009/11/avro-a-new-format-for-data-interchange/ 注:由于个人英语能力有限,翻译不准确 ...

  3. Apache Avro# 1.8.2 Specification (Avro 1.8.2规范)一

    h4 { text-indent: 0.71cm; margin-top: 0.49cm; margin-bottom: 0.51cm; direction: ltr; color: #000000; ...

  4. Apache Avro & Avro Schema简介

    为什么需要schema registry? 首先我们知道: Kafka将字节作为输入并发布 没有数据验证 但是: 如果Producer发送了bad data怎么办? 如果字段被重命名怎么办? 如果数据 ...

  5. Apache Avro 与 Thrift 比较

    http://www.tbdata.org/archives/1307 Avro和Thrift都是跨语言,基于二进制的高性能的通讯中间件. 它们都提供了数据序列化的功能和RPC服务. 总体功能上类似, ...

  6. Apache Avro# 1.8.2 Specification (Avro 1.8.2规范)二

    h5 { text-indent: 0.71cm; margin-top: 0.49cm; margin-bottom: 0.51cm; direction: ltr; color: #000000; ...

  7. spark使用scala读取Avro数据(转)

    这是一篇翻译,原文来自:How to load some Avro data into Spark. 首先,为什么使用 Avro ? 最基本的格式是 CSV ,其廉价并且不需要顶一个一个 schema ...

  8. Hadoop基础-Apache Avro串行化的与反串行化

    Hadoop基础-Apache Avro串行化的与反串行化 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.Apache Avro简介 1>.Apache Avro的来源 ...

  9. Swift - 解析XML格式数据(分别使用GDataXML和DDXML)

    在做一些应用的时候经常需要用到XML解析,比如获取Web Service数据,读取RSS新闻或者博客数据源.下面演示了两个非常方便高效的XML库在Swift里的调用方法. 假设需要被解析的XML数据文 ...

随机推荐

  1. IDEA中对代码进行测试

    一. 建立对应得目录 二.导入junit依赖 <dependency> <groupId>junit</groupId> <artifactId>jun ...

  2. 零基础学习java------31---------共享单车案例,html快速入门(常见标签,get和post的区别)

     一 .单车案例 二. HTML快速入门 红字表示要掌握的内容 超文本标记语言,此处的标记指的即是关键字,其用处是用来写页面(展示数据). 语法:(1)./当前目录:../ 父级目录 (2)注释符号: ...

  3. Android中的性能优化

    由于手机硬件的限制,内存和CPU都无法像pc一样具有超大的内存,Android手机上,过多的使用内存,会容易导致oom,过多的使用CPU资源,会导致手机卡顿,甚至导致anr.我主要是从一下几部分进行优 ...

  4. 使用ajax对用户注册时,用户名进行检验

    package cn.hopetesting.com.servlet;import com.fasterxml.jackson.databind.ObjectMapper;import javax.p ...

  5. Ajax异步更新网页(使用原生JavaScript)

    一.页面代码 <!DOCTYPE html> <html> <head> <title>MyHtml.html</title> <me ...

  6. Jenkins备份

    目录 一.目录结构 二.插件备份 一.目录结构 Jenkins的所有数据都是存放在文件中的,所以,Jenins备份其实就是备份Jenkins_HOME目录. JENKINS_HOME目录的机构如下: ...

  7. MySQL如何使用coalesce函数

    coalesce(a,b,c); 参数说明:如果a==null,则选择b:如果b==null,则选择c:如果a!=null,则选择a:如果a b c 都为null ,则返回为null(没意义)

  8. windows10 安装 Mysql8.0

    目录 1.Mysql8.0下载 2.配置环境变量 3.在安装目录下创建my.ini文件 4 初始化Mysql 5 安装至系统服务 6 更改密码 1.Mysql8.0下载 2.配置环境变量 将下载后文件 ...

  9. Table.RemoveLastN删除后面N….RemoveLastN(Power Query 之 M 语言)

    数据源: "姓名""基数""个人比例""个人缴纳""公司比例""公司缴纳"&qu ...

  10. HMS Core版本发布公告

    新增动作捕捉能力.通过简单拍摄即可获得人体3D骨骼关键点数据,广泛应用于虚拟形象.体育运动和医学分析等场景: 3D物体建模能力iOS版本上线. 查看详情>> 新增道路吸附能力.可根据坐标点 ...