Pandas高级教程之:稀疏数据结构
简介
如果数据中有很多NaN的值,存储起来就会浪费空间。为了解决这个问题,Pandas引入了一种叫做Sparse data的结构,来有效的存储这些NaN的值。
Spare data的例子
我们创建一个数组,然后将其大部分数据设置为NaN,接着使用这个数组来创建SparseArray:
In [1]: arr = np.random.randn(10)
In [2]: arr[2:-2] = np.nan
In [3]: ts = pd.Series(pd.arrays.SparseArray(arr))
In [4]: ts
Out[4]:
0 0.469112
1 -0.282863
2 NaN
3 NaN
4 NaN
5 NaN
6 NaN
7 NaN
8 -0.861849
9 -2.104569
dtype: Sparse[float64, nan]
这里的dtype类型是Sparse[float64, nan],它的意思是数组中的nan实际上并没有存储,只有非nan的数据才被存储,并且这些数据的类型是float64.
SparseArray
arrays.SparseArray
是一个 ExtensionArray
,用来存储稀疏的数组类型。
In [13]: arr = np.random.randn(10)
In [14]: arr[2:5] = np.nan
In [15]: arr[7:8] = np.nan
In [16]: sparr = pd.arrays.SparseArray(arr)
In [17]: sparr
Out[17]:
[-1.9556635297215477, -1.6588664275960427, nan, nan, nan, 1.1589328886422277, 0.14529711373305043, nan, 0.6060271905134522, 1.3342113401317768]
Fill: nan
IntIndex
Indices: array([0, 1, 5, 6, 8, 9], dtype=int32)
使用 numpy.asarray() 可以将其转换为普通的数组:
In [18]: np.asarray(sparr)
Out[18]:
array([-1.9557, -1.6589, nan, nan, nan, 1.1589, 0.1453,
nan, 0.606 , 1.3342])
SparseDtype
SparseDtype 表示的是Spare类型。它包含两种信息,第一种是非NaN值的数据类型,第二种是填充时候的常量值,比如nan:
In [19]: sparr.dtype
Out[19]: Sparse[float64, nan]
可以像下面这样构造一个SparseDtype:
In [20]: pd.SparseDtype(np.dtype('datetime64[ns]'))
Out[20]: Sparse[datetime64[ns], NaT]
可以指定填充的值:
In [21]: pd.SparseDtype(np.dtype('datetime64[ns]'),
....: fill_value=pd.Timestamp('2017-01-01'))
....:
Out[21]: Sparse[datetime64[ns], Timestamp('2017-01-01 00:00:00')]
Sparse的属性
可以通过 .sparse 来访问sparse:
In [23]: s = pd.Series([0, 0, 1, 2], dtype="Sparse[int]")
In [24]: s.sparse.density
Out[24]: 0.5
In [25]: s.sparse.fill_value
Out[25]: 0
Sparse的计算
np的计算函数可以直接用在SparseArray中,并且会返回一个SparseArray。
In [26]: arr = pd.arrays.SparseArray([1., np.nan, np.nan, -2., np.nan])
In [27]: np.abs(arr)
Out[27]:
[1.0, nan, nan, 2.0, nan]
Fill: nan
IntIndex
Indices: array([0, 3], dtype=int32)
SparseSeries 和 SparseDataFrame
SparseSeries 和 SparseDataFrame在1.0.0 的版本时候被删除了。取代他们的是功能更强的SparseArray。
看下两者的使用上的区别:
# Previous way
>>> pd.SparseDataFrame({"A": [0, 1]})
# New way
In [31]: pd.DataFrame({"A": pd.arrays.SparseArray([0, 1])})
Out[31]:
A
0 0
1 1
如果是SciPy 中的sparse 矩阵,那么可以使用 DataFrame.sparse.from_spmatrix() :
# Previous way
>>> from scipy import sparse
>>> mat = sparse.eye(3)
>>> df = pd.SparseDataFrame(mat, columns=['A', 'B', 'C'])
# New way
In [32]: from scipy import sparse
In [33]: mat = sparse.eye(3)
In [34]: df = pd.DataFrame.sparse.from_spmatrix(mat, columns=['A', 'B', 'C'])
In [35]: df.dtypes
Out[35]:
A Sparse[float64, 0]
B Sparse[float64, 0]
C Sparse[float64, 0]
dtype: object
本文已收录于 http://www.flydean.com/13-python-pandas-sparse-data/
最通俗的解读,最深刻的干货,最简洁的教程,众多你不知道的小技巧等你来发现!
Pandas高级教程之:稀疏数据结构的更多相关文章
- Pandas高级教程之:GroupBy用法
Pandas高级教程之:GroupBy用法 目录 简介 分割数据 多index get_group dropna groups属性 index的层级 group的遍历 聚合操作 通用聚合方法 同时使用 ...
- Pandas高级教程之:Dataframe的合并
目录 简介 使用concat 使用append 使用merge 使用join 覆盖数据 简介 Pandas提供了很多合并Series和Dataframe的强大的功能,通过这些功能可以方便的进行数据分析 ...
- Pandas高级教程之:处理text数据
目录 简介 创建text的DF String 的方法 columns的String操作 分割和替换String String的连接 使用 .str来index extract extractall c ...
- Pandas高级教程之:处理缺失数据
目录 简介 NaN的例子 整数类型的缺失值 Datetimes 类型的缺失值 None 和 np.nan 的转换 缺失值的计算 使用fillna填充NaN数据 使用dropna删除包含NA的数据 插值 ...
- Pandas高级教程之:category数据类型
目录 简介 创建category 使用Series创建 使用DF创建 创建控制 转换为原始类型 categories的操作 获取category的属性 重命名categories 使用add_cate ...
- Pandas高级教程之:plot画图详解
目录 简介 基础画图 其他图像 bar stacked bar barh Histograms box Area Scatter Hexagonal bin Pie 在画图中处理NaN数据 其他作图工 ...
- Pandas高级教程之:统计方法
目录 简介 变动百分百 Covariance协方差 Correlation相关系数 rank等级 简介 数据分析中经常会用到很多统计类的方法,本文将会介绍Pandas中使用到的统计方法. 变动百分百 ...
- Pandas高级教程之:window操作
目录 简介 滚动窗口 Center window Weighted window 加权窗口 扩展窗口 指数加权窗口 简介 在数据统计中,经常需要进行一些范围操作,这些范围我们可以称之为一个window ...
- Pandas高级教程之:自定义选项
目录 简介 常用选项 get/set 选项 经常使用的选项 最大展示行数 超出数据展示 最大列的宽度 显示精度 零转换的门槛 列头的对齐方向 简介 pandas有一个option系统可以控制panda ...
随机推荐
- [LeetCode] 231. 2 的幂
位运算 231. 2 的幂 ``` class Solution { public boolean isPowerOfTwo(int n) { int cnt = 0; while (n>0) ...
- Docker Buildx插件
Docker Buildx插件 Overview Docker Buildx是一个CLI插件,它扩展了Docker命令,完全支持Moby BuildKit builder toolkit提供的功能.它 ...
- LongAdder源码阅读笔记
功能描述 LongAdder通过创建多个副本对象,解决了多线程使用CAS更新同一个对象造成的CPU阻塞,加快了对线程处理的速度.当多个线程同一时刻更新一个AtomicLong类型的变量时,只有一个线程 ...
- 自动发布.NET Core Web应用
1 原因和目的 相信很多开发者都需要将自己的编写的应用进行编译并部署到服务器上,这个过程在个人或小型团队的项目中都是一个简单的事情.但是对于并行化开发而言,就需要通过工具来辅助这个过程.于是,我参考了 ...
- 实验7、Django VS Flask VS Node:如何选择
实验介绍 1. 实验内容 在本教程中,我们将详细介绍Django和Flask之间的比较.Flask和Django是基于Python的Web开发框架.许多正在朝着轻型微框架发展.这些框架敏捷,灵活,小巧 ...
- What is maven?
Introduction Maven, a Yiddish word meaning accumulator(累加器) of knowledge, began as an attempt to sim ...
- Spring自定义转换类,让@Value更方便
我最新最全的文章都在南瓜慢说 www.pkslow.com,欢迎大家来喝茶! 1 前言 关于配置的文章已经写了很多,相信看过的人还是会有一定收获的,系列文章可阅读:南瓜慢说-配置相关文章.对于@Val ...
- C#构造函数中:this()的作用
通俗来说,可以说是构造函数的继承 (1) :this()用来继承无参时的构造函数,例如下面代码 static void Main(string[] args) { AA aA = new AA(&qu ...
- Spring Boot 2.x基础教程:使用Redis的发布订阅功能
通过前面一篇集中式缓存的使用教程,我们已经了解了Redis的核心功能:作为K.V存储的高性能缓存. 接下来我们会分几篇来继续讲讲Redis的一些其他强大用法!如果你对此感兴趣,一定要关注收藏我哦! 发 ...
- 数据权限筛选(RLS)的两种实现介绍
在应用程序中,尤其是在统计的时候, 需要使用数据权限来筛选数据行. 简单的说,张三看张三部门的数据, 李四看李四部门的数据:或者员工只能看自己的数据, 经理可以看部门的数据.这个在微软的文档中叫Row ...