CF1225E题解 Rock Is Push
在打CF的时候没想到www这个dp真的蛮巧妙的
这是一道dp题(废话
假设我们走到了\((i,j)\)位置,因为我们只能下移/右移,那么我们所有上方与左方的石块(即\(\{ (i,j)|i<n \space || \space j<m \}\)的石块)不管被推到那里都与我无瓜(可以画几张图略推一推,还是比较明显),即该题无后效性,可用dp求解。
合在一起不是很好算,我们可以考虑将右移与下移分开对其进行dp。
因此我们可以用数组\(rs,ds\)来记录某位置右边的石头数量以及下方的石头数量,因为只有这些石头对\((i,j)\)的状态转移有关
设二维状态数组\(r,d\),表示在\((i,j)\)位置时下一步向右(\(r\))或向下(\(d\))走,到达目标位置\((n,m)\)的方案总数,由定义可得\(r[n][m]=d[n][m]=1\)。
重点来惹w:状态转移方程
之所以说这道题巧妙,一是因为它分成了\(r,d\)两块来dp,再一个就是状态转移方程了。

如上图所示,假设我们在黄色格子\((i,j)\),蓝色圆形为石头,虚线为石头移动轨迹。那么易得\(ds[i][j]=1\)(\(rs\)定义忘了的看上文)。因为我们下一步必须向下走,所以我们可以选择连续走\(1\)步、\(2\)步、...一直到\(n-i-ds[i][j]\)步为止,此时下面的石头刚好全部被一个接一个地推到了墙上排好。因此状态转移方程即
\]
\]
(提前解一个疑:这里对\(r\)数组进行求和而非\(d\)数组求和的原因是我们连续往下走了\(k\)步后下一步应该往右,因此这里用\(r\),反之亦然)
想想还是蛮巧的(或者是窝太弱啦qaq
当然一个一个枚举\(r[i][j+k],d[i+k][j]\)肯定会超时,因此这里我们使用前缀和保存。
注意:代码里的 \(ds,rs\) 及 \(sumd,sumr\) 意义都搞反了( 感谢:@11eyes
code:
#include<bits/stdc++.h>
using namespace std;
long long n , m , r[2100][2100] , d[2100][2100] , ds[2100][2100] , rs[2100][2100];
long long sumr[2100][2100] , sumd[2100][2100];
const int mod = 1e9 + 7;
char s[2100];
//d:down r:right (update:反了
int main()
{
scanf("%d%d" , &n , &m);
for(register int i = 1 ; i <= n ; i++ )
{
scanf("%s" , s + 1);
for(register int j = 1 ; j <= m ; j++ )
{
if(s[j] == 'R') rs[i][j] = 1 , ds[i][j] = 1;
}
}
if(n == 1 && m == 1)
{
cout << (rs[1][1] ^ 1);
return 0;
}
for(register int i = n ; i >= 1 ; i-- )
{
for(register int j = m ; j >= 1 ; j-- )
{
ds[i][j] += ds[i][j + 1];
rs[i][j] += rs[i + 1][j];
}
}
r[n][m] = d[n][m] = sumd[n][m] = sumr[n][m] = 1;
for(register int i = n ; i >= 1 ; i-- )
{
for(register int j = m ; j >= 1 ; j-- )
{
if(i == n && j == m) continue;
r[i][j] = (sumd[i][j + 1] - sumd[i][m - ds[i][j + 1] + 1]) % mod;
d[i][j] = (sumr[i + 1][j] - sumr[n - rs[i + 1][j] + 1][j]) % mod;
sumr[i][j] = (sumr[i + 1][j] + r[i][j]) % mod;
sumd[i][j] = (sumd[i][j + 1] + d[i][j]) % mod;
}
}
/*for(register int i = 1 ; i <= n ; i++ )
{
for(register int j = 1 ; j <= m ; j++ )
{
cout << d[i][j] << ' ';
}
cout << endl;
}
cout << endl;
for(register int i = 1 ; i <= n ; i++ )
{
for(register int j = 1 ; j <= m ; j++ )
{
cout << r[i][j] << ' ';
}
cout << endl;
}*/
// cerr << r[1][1] << " " << d[1][1] << endl;
cout << ((r[1][1] + d[1][1]) % mod + mod) % mod;
return 0;
}
CF1225E题解 Rock Is Push的更多相关文章
- Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2) E. Rock Is Push dp
E. Rock Is Push You are at the top left cell (1,1) of an n×m labyrinth. Your goal is to get to the b ...
- [CodeForces - 1225E]Rock Is Push 【dp】【前缀和】
[CodeForces - 1225E]Rock Is Push [dp][前缀和] 标签:题解 codeforces题解 dp 前缀和 题目描述 Time limit 2000 ms Memory ...
- 【CF1225E Rock Is Push】推岩石
题目描述 你现在在一个\(n×m\)的迷宫的左上角(即点\((1,1)\)),你的目标是到达迷宫的右下角(即点\((n,m)\)).一次移动你只能向右或者是向下移动一个单位.比如在点\((x,y)\) ...
- CF1225E Rock Is Push (计数)
观察性质计数题orz小贺 考场上跟榜才切 我们只能往下和往右走,那么只有连续的往下和往右可能会造成不合法的情况!如果当前这一步是向右,那么只有它前面连续的一段向右可能影响到它. 考虑把连续的向右/下一 ...
- cf rock is push 【dp】
附上学习的博客:https://blog.csdn.net/u013534123/article/details/102762673 大致题意:一个迷宫,里面有很多箱子,你可以向右或者向下走.当你遇到 ...
- Codeforces 1247E. Rock Is Push
传送门 显然考虑 $dp$ ,设 $fx[i][j]$ 表示从 $(i,j)$ 出发往下走一格,最终到达 $(n,m)$ 的方案数,$fy[i][j]$ 表示从 $(i,j)$ 出发往右走一格,最终到 ...
- 【CF1247E】Rock Is Push(DP,二分)
题意:有一个n*m的方格,每一格可能为空也可能有石头,要从(1,1)走到(n,m),每次可以往右或往下走 每次走的时候都会将自己面前的所有石头向移动方向推一格,如果碰到了边界就推不过去 问方案数模1e ...
- Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2)
A - Forgetting Things 题意:给 \(a,b\) 两个数字的开头数字(1~9),求使得等式 \(a=b-1\) 成立的一组 \(a,b\) ,无解输出-1. 题解:很显然只有 \( ...
- some problem
CF1257F Make Them Similar $solution:$ 折半搜索后考虑如何维护两个数组的和,可以将 $A$ 中每个数减 $A_1$ ,$B$ 中每个数被减 $B_1$ ,$map$ ...
随机推荐
- SpringBoot基础学习(二) SpringBoot全局配置文件及配置文件属性值注入
全局配置文件 全局配置文件能够对一些默认配置值进行修改.SpringBoot 使用一个名为 application.properties 或者 application.yaml的文件作为全局配置文件, ...
- Qt开发笔记:OpenSSL库介绍、windows上mingw32版本的OpenSSL编译模块化
前言 Windows上mingw32版本的openssl的编译是属于比较棘手的,OpenSSL本身不提供支持.. OpenSSL 介绍 OpenSSL是一个开放源代码的软件库包,应用程序可 ...
- MindSpore技术理解(上)
MindSpore技术理解(上) 引言 深度学习研究和应用在近几十年得到了爆炸式的发展,掀起了人工智能的第三次浪潮,并且在图像识别.语音识别与合成.无人驾驶.机器视觉等方面取得了巨大的成功.这也对算法 ...
- 利用NVIDIA-NGC中的MATLAB容器加速语义分割
利用NVIDIA-NGC中的MATLAB容器加速语义分割 Speeding Up Semantic Segmentation Using MATLAB Container from NVIDIA NG ...
- 从C到C++过渡的3个原因
从C到C++过渡的3个原因 3 reasons to transition from C to C++ 几十年来,嵌入式软件工程师们一直在争论他们是否应该使用C或C++.根据2019年嵌入式市场调查, ...
- 4,java数据结构和算法:双向链表 ,有序添加,正向遍历,反向遍历, 增删改查
直接上代码 //节点 class HeroNodeD{ int no; String name; String nickName; HeroNodeD pre;//前一节点 HeroNodeD nex ...
- java后端知识点梳理——JVM
可以先看看我的深入理解java虚拟机笔记 深入理解java虚拟机笔记Chapter2 深入理解java虚拟机笔记Chapter3-垃圾收集器 深入理解java虚拟机笔记Chapter3-内存分配策略 ...
- 彻底搞懂彻底搞懂事件驱动模型 - Reactor
在高性能网络技术中,大家应该经常会看到Reactor模型.并且很多开源软件中都使用了这个模型,如:Redis.Nginx.Memcache.Netty等. 刚开始接触时可能一头雾水,这到底是个什么东东 ...
- 【题解】Luogu p2986 [USACO10MAR]伟大的奶牛聚集Great Cow Gat 树型dp
题目描述 Bessie is planning the annual Great Cow Gathering for cows all across the country and, of cours ...
- Linux分区,格式化概念理解
一.分区概念: 逻辑上分成不同的存储空间. 分区类型: 主分区:最多只能有4个 扩展分区:最多只能有1个. 主分区加扩展分区最多有4个. 布恩那个写入数据,只能包含逻辑分区 逻辑分区: 主分区为什么只 ...