YAOI Round #1 题解
前言
比赛网址:http://47.110.12.131:9016/contest/3
总体来说,这次比赛是有一定区分度的, \(\text{ACM}\) 赛制也挺有意思的。
题解
A. 云之彼端,约定的地方
考点:
无(签到题)
解法:
本题是拓扑学中的欧拉公式的结论题。
我们发现 \(V=E-F+2\) ,于是便得到了答案。
代码:
#include <bits/stdc++.h>
using namespace std;
int main()
{
int e,f;
scanf("%d%d",&e,&f);
printf("%d",e-f+2);
return 0;
}
B. 秒速 5 厘米
考点:
拓展欧几里得,裴蜀定理,简单数论/构造。
由于近年来考试加强了对数论的考察,今年更是考了一道构造题,故出此题来考考大家。
解法:
要使所有的数清零,也就是要使方程 \(len_1 \times x + len_2 \times y + len_3 \times z + X = 0\) 这个方程一定有解。
于是联想到裴蜀定理: \(ax+by=c\) 有解当且仅当 \(\gcd(x,y)|c\) 。
故我们知道当 \(\gcd(x,y)=1\) 时,这个方程一定有解。
所以我们考虑第一次操作修改区间 \([1,n]\) ,第二次修改区间 \([1,n-1]\) ,第三次修改 \(n\)。
由于 \(n\) 和 \(n-1\) 互质,所以一定存在方法使前两次之和加上原数等于 \(0\) ,而最后一次操作又能使最后一个数变成 \(0\) 。
具体构造方案就变成了求方程 \(nx + (n-1)y = C\) 的任意一组解。
而这不管是交给小学奥数还是交给拓展欧几里得都是可以的。
这题的构造其实不难想到,当然观察样例也可以发现,可以说观察样例是极其重要的能力。
代码: (来自 liyiming ,出题人是用拓欧写的,放这个比较友好。)
int main()
{
cin >> n;
for (int i = 1; i <= n; i++) cin >> a[i];
cout << 1 << " " << n - 1 << endl;
cout << a[1] * (n - 1);
for (int i = 2; i <= n - 1; i++) cout << " " << a[i] * (n - 1);
cout << endl;
cout << 1 << " " << n << endl;
for (int i = 1; i <= n - 1; i++) cout << -a[i] * n << " ";
cout << 0 << endl;
cout << n << " " << n << endl;
cout << -a[n];
cout << endl;
return 0;
}
C. 追逐繁星的孩子
考点:
树论,树的遍历,概率的基本计算。
解法:
对于题目中给的这棵树,从 \(1\) 号节点开始进行一次 \(\text{dfs}\) ,并在过程中计算经过该点的概率即可。
当然,如果当前概率已经不合法,则可以剪枝优化。
本题的难度明显小于 B 题, AC 人数不符合预期……
代码:
#include <bits/stdc++.h>
#define Re register
using namespace std;
const int maxn=500005;
vector<int> T[maxn],E[maxn];
int n,q,cnt;
void dfs(int x,int fa,long double p)
{
if(p*100<q) return;
cnt++;
for(Re int i=0;i<T[x].size();i++)
{
if(T[x][i]==fa) continue;
dfs(T[x][i],x,p*E[x][i]/100);
}
}
int main()
{
scanf("%d%d",&n,&q);
for(Re int i=1;i<n;i++)
{
int u,v,p;
scanf("%d%d%d",&u,&v,&p);
T[u].push_back(v);
T[v].push_back(u);
E[u].push_back(p);
E[v].push_back(p);
}
dfs(1,1,1.0);
printf("%d",cnt);
return 0;
}
D. 言叶之庭
代码:
int n;
cin>>n;
for (int i = n - 1; i >= 0; i--)
{
f[i] = f[i+1] + (double)n / ((double)n - i);
g[i] = g[i+1] + (double)i / ((double)n - i) * f[i]+ f[i+1] + (double)n / ((double)n - i);
}
printf("%.2lf",g[0]);
考点:
期望相关知识。
可以说期望是一个大难点,如何逾越它是个重要的问题。
题解:
本题为 Luogu P4550 原题……
E. 你的名字
考点:
组合数学,计数问题。
计数问题是福建省选的黄金考点,六题能出四道计数。
题解:
使用 Burnside 引理(\(\begin{aligned}cnt = \frac{1}{|G|}\sum\limits \chi (x)\end{aligned}\))或者简单的容斥可得:
\]
而 \(2\) 的那么多次方直接用快速幂计算即可。
(考虑利用费马小定理,我们可以进一步优化,这里就不介绍了,可以看下面代码自行理解……)
代码:
cout<<(2*1ll*qpow(2,ksc(n/2,n/2,mod-1))+qpow(2,ksc(n/2,n,mod-1))+qpow(2,ksc(n,n,mod-1)))%mod*1ll*inv4%mod;
F. 天气之子
考点:
计数问题,树论。
树论是 noip / CSP 中最重要的考点之一。
题解:
这种方法叫做 贡献 法,考虑一个连通块在哪些 \([l,r]\) 中出现过。
我们需要取其中一个点作为这个连通块的代表,不妨就取深度最浅的那个点。
于是我们枚举每个结点作为连通块的最浅结点,显然它能作为最浅结点当且仅当它的父节点没有被取到,当它的父节点被取到时,它就不是最浅节点,也可以认为这个连通块它不存在。
然后就做完了本题……
代码:
u64 ans = 0;
for (int i = 2; i <= n; i++)
{
if (fat[i] < i)
{
ans += (i - fat[i]) * 1ll * (n - i + 1);
}
else
{
ans += (fat[i] - i) * 1ll * i ;
}
}
YAOI Round #1 题解的更多相关文章
- YAOI Round #7 题解
前言 比赛链接: Div.1 : http://47.110.12.131:9016/contest/16 Div.2 : http://47.110.12.131:9016/contest/15 D ...
- YAOI Round #5 题解
前言 比赛链接: Div.1 : http://47.110.12.131:9016/contest/13 Div.2 : http://47.110.12.131:9016/contest/12 D ...
- YAOI Round #3 题解
前言 比赛链接: Div.1 : http://47.110.12.131:9016/contest/7 Div.2 : http://47.110.12.131:9016/contest/8 Div ...
- Codeforces Round #556 题解
Codeforces Round #556 题解 Div.2 A Stock Arbitraging 傻逼题 Div.2 B Tiling Challenge 傻逼题 Div.1 A Prefix S ...
- LibreOJ β Round #2 题解
LibreOJ β Round #2 题解 模拟只会猜题意 题目: 给定一个长为 \(n\) 的序列,有 \(m\) 次询问,每次问所有长度大于 \(x\) 的区间的元素和的最大值. \(1 \leq ...
- Codeforces Round #569 题解
Codeforces Round #569 题解 CF1179A Valeriy and Deque 有一个双端队列,每次取队首两个值,将较小值移动到队尾,较大值位置不变.多组询问求第\(m\)次操作 ...
- Codeforces Round #557 题解【更完了】
Codeforces Round #557 题解 掉分快乐 CF1161A Hide and Seek Alice和Bob在玩捉♂迷♂藏,有\(n\)个格子,Bob会检查\(k\)次,第\(i\)次检 ...
- CFEducational Codeforces Round 66题解报告
CFEducational Codeforces Round 66题解报告 感觉丧失了唯一一次能在CF上超过wqy的机会QAQ A 不管 B 不能直接累计乘法打\(tag\),要直接跳 C 考虑二分第 ...
- Google kickstart 2022 Round A题解
Speed Typing 题意概述 给出两个字符串I和P,问能否通过删除P中若干个字符得到I?如果能的话,需要删除字符的个数是多少? 数据规模 \[1≤|I|,|P|≤10^5 \] 双指针 设置两个 ...
随机推荐
- Jittor实现Conditional GAN
Jittor实现Conditional GAN Generative Adversarial Nets(GAN)提出了一种新的方法来训练生成模型.然而,GAN对于要生成的图片缺少控制.Conditio ...
- 基于TensorRT的BERT实时自然语言理解(下)
基于TensorRT的BERT实时自然语言理解(下) BERT Inference with TensorRT 请参阅Python脚本bert_inference.py还有详细的Jupyter not ...
- 反应式系统实现MQTT客户机
反应式系统实现MQTT客户机 Implementing an MQTT client for reactive systems MQTT Reactive是从LiamBindle的MQTT-C库派生的 ...
- jmeter设置成中文显示
meter默认语言设置: 1.临时设置: 进入options -- Choose Language -- 选择中文简体,设置后语言切换成中文,重启失效 2.永久设置:进入jmeter目录下的bin目录 ...
- 【Android编程】Java利用Socket类编写Metasploit安卓载荷辅助模块
/作者:Kali_MG1937 CSDN博客:ALDYS4 QQ:3496925334/ 注意!此文章被作者标记到 黑历史 专栏中,这意味着本篇文章可能存在 质量低下,流水账文,笔法低质 的问题 为了 ...
- Task04:集合运算
4.1 表的加减法 4.1.1 什么是集合运算 集合在数学领域表示"各种各样的事物的总和", 在数据库领域表示记录的集合. 具体来说,表.视图和查询的执行结果都是记录的集合, 其中 ...
- 【SQLite】教程06-SQLite表操作
创建表: CREATE TABLE 语句用于在任何给定的数据库创建一个新表.命名表.定义列.定义每一列的数据类型 查看表: 详细查看表: 重命名表: 删除表: 创建表并添加7条记录(第七条记录用了第二 ...
- (1)Canal入门
1.前言 在我们系统开发过程中,根据业务场景很多数据库数据并不会直接给用户访问的,需要同步保存到ElasticSearch.Redis等存储应用当中(例如最常见的是搜索页面的ElasticSearch ...
- ES6学习笔记之函数(一)
1.函数的默认参数 在ES6 之前,我们不能直接为函数的参数指定默认值,只能采用其他方法.如: function show (num, callback){ num = num || 6; callb ...
- 用python+pyqt5语言编写的扫雷小游戏软件
github源码地址:https://github.com/richenyunqi/Mine-game ,撒娇打滚求star哦~~ღ( ´・ᴗ・` )比心 扫雷主界面模块 整个扫雷界面使用大量的白色方 ...