Enums and Pattern Matching

摘要

枚举定义

enum IpAddrKind {
V4,
V6,
}

枚举方法

fn main() {
enum Message {
Quit,
Move { x: i32, y: i32 },
Write(String),
ChangeColor(i32, i32, i32),
} impl Message {
fn call(&self) {
// method body would be defined here
}
} let m = Message::Write(String::from("hello"));
m.call();
}

Option<T>使用

match使用

Defining an Enum

枚举属性的类型统一为枚举的名称

enum IpAddrKind {
V4,
V6,
}
 let four = IpAddrKind::V4;
let six = IpAddrKind::V6;

Note that the variants of the enum are namespaced under its identifier, and we use a double colon to separate the two. The reason this is useful is that now both values IpAddrKind::V4 and IpAddrKind::V6 are of the same type: IpAddrKind. We can then, for instance, define a function that takes any IpAddrKind:

fn route(ip_kind: IpAddrKind) {}
route(IpAddrKind::V4);
route(IpAddrKind::V6);
    enum IpAddrKind {
V4,
V6,
} struct IpAddr {
kind: IpAddrKind,
address: String,
} let home = IpAddr {
kind: IpAddrKind::V4,
address: String::from("127.0.0.1"),
}; let loopback = IpAddr {
kind: IpAddrKind::V6,
address: String::from("::1"),
};
    enum IpAddr {
V4(String),
V6(String),
} let home = IpAddr::V4(String::from("127.0.0.1")); let loopback = IpAddr::V6(String::from("::1"));
fn main() {
enum IpAddr {
V4(u8, u8, u8, u8),
V6(String),
} let home = IpAddr::V4(127, 0, 0, 1); let loopback = IpAddr::V6(String::from("::1"));
}
#![allow(unused_variables)]
fn main() {
struct Ipv4Addr {
// --snip--
} struct Ipv6Addr {
// --snip--
} enum IpAddr {
V4(Ipv4Addr),
V6(Ipv6Addr),
}
}
enum Message {
Quit,
Move { x: i32, y: i32 },
Write(String),
ChangeColor(i32, i32, i32),
}

This enum has four variants with different types:

  • Quit has no data associated with it at all.
  • Move includes an anonymous struct inside it.
  • Write includes a single String.
  • ChangeColor includes three i32 values.
fn main() {
enum Message {
Quit,
Move { x: i32, y: i32 },
Write(String),
ChangeColor(i32, i32, i32),
} impl Message {
fn call(&self) {
// method body would be defined here
}
} let m = Message::Write(String::from("hello"));
m.call();
}

[derive(Debug)] 会自动实现一个输出格式,然后就可以使用{:?}输出枚举

fn testEnum(){

    #[derive(Debug)]
enum Message {
Quit,
Move{x: i16, y: i16},
Write(String),
ChangeColor(i32,i32,i32),
} impl Message {
fn call(&self) {
let v1 = Message::Quit;
let v2 = Message::Move{x: 25, y: 25}; let v4 = Message::ChangeColor(100,100,100);
println!("{:#?} ",v1);
println!("{:#?} ",v2);
println!("{:?}",v4);
} } let m = Message::Write(String::from("enum show "));
println!("{:?}",m);
m.call();
}
Write("enum show ")
Quit
Move {
x: 25,
y: 25,
}
ChangeColor(100, 100, 100)

Rust枚举中一个超级重要的的特性:所有枚举都是同一类型,这一点在rust中的应用, 相当于Java的抽象、继承,相当于C++中的泛型,针对此特点,特举例如下

#[derive(Debug)]
enum WorkSort {
Student,
Teacher,
Doctor,
} impl WorkSort{
pub fn desc(&self){
println!("I am a {:?}",self);
}
} pub fn test1(){
let tch = WorkSort::Teacher;
tch.desc(); let std = WorkSort::Student;
std.desc(); }

调用test1方法,输出

I am a Teacher
I am a Student

The Option Enum and Its Advantages Over Null Values

Programming language design is often thought of in terms of which features you include, but the features you exclude are important too. Rust doesn’t have the null feature that many other languages have. Null is a value that means there is no value there. In languages with null, variables can always be in one of two states: null or not-null.

The problem isn’t really with the concept but with the particular implementation. As such, Rust does not have nulls, but it does have an enum that can encode the concept of a value being present or absent. This enum is Option<T>, and it is defined by the standard library as follows:

#![allow(unused_variables)]
fn main() {
enum Option<T> {
Some(T),
None,
}
}

The Option<T> enum is so useful that it’s even included in the prelude; you don’t need to bring it into scope explicitly. In addition, so are its variants: you can use Some and None directly without the Option:: prefix. The Option<T> enum is still just a regular enum, and Some(T) and None are still variants of type Option<T>.

For now, all you need to know is that <T> means the Some variant of the Option enum can hold one piece of data of any type. Here are some examples of using Option values to hold number types and string types:

fn main() {
let some_number = Some(5);
let some_string = Some("a string"); let absent_number: Option<i32> = None;
}

In short, because Option<T> and T (where T can be any type) are different types, the compiler won’t let us use an Option<T> value as if it were definitely a valid value. For example, this code won’t compile because it’s trying to add an i8 to an Option<i8>:

fn main() {
let x: i8 = 5;
let y: Option<i8> = Some(5); let sum = x + y;//error
}

The match Control Flow Operator

Rust has an extremely powerful control flow operator called match that allows you to compare a value against a series of patterns and then execute code based on which pattern matches. Patterns can be made up of literal values, variable names, wildcards, and many other things;
fn main() {
println!("----------match----------");
let coin = Coin::Penny;
let res = value_in_cents(coin);
println!("{}",res); let coin = Coin::Dime;
let res = value_in_cents(coin);
println!("{}",res);
} enum Coin {
Penny,
Nockel,
Dime,
Quarter,
} fn value_in_cents(coin: Coin) -> u8 {
match coin {
Coin::Penny => 1,
Coin::Nockel => 5,
Coin::Dime => 10,
Coin::Quarter => 25,
}
}
$ cargo run
Compiling enum_match v0.1.0 (/opt/wks/rust_study/enum_match)
warning: variant is never constructed: `Nockel`
--> src/main.rs:15:5
|
15 | Nockel,
| ^^^^^^
|
= note: `#[warn(dead_code)]` on by default warning: variant is never constructed: `Quarter`
--> src/main.rs:17:5
|
17 | Quarter,
| ^^^^^^^ warning: 2 warnings emitted Finished dev [unoptimized + debuginfo] target(s) in 0.52s
Running `target/debug/enum_match`
----------match----------
1
10
#[derive(Debug)]
enum UsState {
Alabama,
Alaska,
// --snip--
} enum Coin {
Penny,
Nickel,
Dime,
Quarter(UsState),
} fn value_in_cents(coin: Coin) -> u8 {
match coin {
Coin::Penny => 1,
Coin::Nickel => 5,
Coin::Dime => 10,
Coin::Quarter(state) => {
println!("State quarter from {:?}!", state);
25
}
}
} fn main() {
value_in_cents(Coin::Quarter(UsState::Alaska));
}
Option<T> match
#[derive(Debug)]
enum Option<T> {
None,
Some(T)
} fn plus_one(x: Option<i32>) -> Option<i32>{
match x {
Option::None => Option::None,
Option::Some(i) => Option::Some(i+1),
}
} fn test_match(){
let five = Option::Some(5);
let six = plus_one(five);
println!("{:?}",six);
let none = plus_one(Option::None);
println!("{:?}",none);
}

Matches Are Exhaustive

fn main() {
fn plus_one(x: Option<i32>) -> Option<i32> {
match x {
Some(i) => Some(i + 1),
}
} let five = Some(5);
let six = plus_one(five);
let none = plus_one(None);
}

We didn’t handle the None case, so this code will cause a bug. Luckily, it’s a bug Rust knows how to catch. If we try to compile this code, we’ll get this error:

$ cargo run
Compiling enums v0.1.0 (file:///projects/enums)
error[E0004]: non-exhaustive patterns: `None` not covered
--> src/main.rs:3:15
|
3 | match x {
| ^ pattern `None` not covered
|
= help: ensure that all possible cases are being handled, possibly by adding wildcards or more match arms error: aborting due to previous error For more information about this error, try `rustc --explain E0004`.
error: could not compile `enums`. To learn more, run the command again with --verbose.

The _ Placeholder

Rust also has a pattern we can use when we don’t want to list all possible values. For example, a u8 can have valid values of 0 through 255. If we only care about the values 1, 3, 5, and 7, we don’t want to have to list out 0, 2, 4, 6, 8, 9 all the way up to 255. Fortunately, we don’t have to: we can use the special pattern _ instead:

fn main() {
let some_u8_value = 0u8;
match some_u8_value {
1 => println!("one"),
3 => println!("three"),
5 => println!("five"),
7 => println!("seven"),
_ => (),
}
}
_ => (),
这一行表示轮空,什么也不会输出

The _ pattern will match any value. By putting it after our other arms, the _ will match all the possible cases that aren’t specified before it. The () is just the unit value, so nothing will happen in the _ case. As a result, we can say that we want to do nothing for all the possible values that we don’t list before the _ placeholder.

However, the match expression can be a bit wordy in a situation in which we care about only one of the cases. For this situation, Rust provides if let.

Concise Control flow with if let

#![allow(unused_variables)]
fn main() {
println!("Hello, match!");
let1();
let2();
} #[derive(Debug)]
enum Option<T> {
Some(T),
None
} fn let1(){
let some_u3_value = Option::Some(0u8);
match some_u3_value {
Option::Some(3) => println!("three"),
_ => (),
} if let Option::Some(3) = some_u3_value{
println!("three");
} } fn let2(){
let some_u3_value = Option::Some(0u8);
let mut count = 0;
match some_u3_value {
Option::Some(3) => println!("three"),
_ => count += 1,
} if let Option::Some(3) = some_u3_value{
println!("three");
}else{
count += 1;
}
println!("{}",count);
}

2.8 rust 枚举与模式匹配的更多相关文章

  1. Rust中的枚举及模式匹配

    这个enum的用法,比c要强,和GO类似. enum Coin { Penny, Nickel, Dime, Quarter, } fn value_in_cents(coin: Coin) -> ...

  2. 学习Rust第一天 Rust语言特点

    学习Rust之前,我觉得应该首先了解Rust语言的设计目的是什么?为什么会诞生这门语言?这门语言和其他的语言有什么不同. Rust语言的设计特点 高性能:rust拥有和C++相近的性能表现,所以在嵌入 ...

  3. Swift 模式匹配

    前言 在 Swift 中模式匹配是个重要的概念. 最常用的模式匹配是 switch 语法. 模式匹配非常灵活,在使用 switch 进行一轮模式匹配时,不需要所有的 case 都是同一种风格. let ...

  4. swift 模式

    原文:http://www.cocoachina.com/newbie/basic/2014/0612/8800.html 模式(pattern)代表了单个值或者复合值的结构.比如,元组(1, 2)的 ...

  5. ballerina 学习十五 控制流

    ballerina 的控制流没有什么特殊,只是相比一般语言多了一个模式匹配的操作match ,实际上其他语言(erlang elixir rust 中的模式匹配是很强大的) 简单例子 if/else ...

  6. rust Option枚举

    枚举 1 fn main() { 2 let a_binding; 3 { 4 let x = 2; 5 a_binding = x * x; 6 } 7 println!("a bindi ...

  7. 专访Rust——由Mozilla开发的系统编程语言(目标人群就是那些纠结的C++程序员,甚至也是他们自己)

    Rust是由Mozilla开发的专门用来编写高性能应用程序的系统编程语言.以下是对Rust的创始人——Graydon Hoare的采访. Graydon Hoare,自称为职业编程语言工程师,从200 ...

  8. rust 高级话题

    目录 rust高级话题 前言 零大小类型ZST 动态大小类型DST 正确的安装方法 结构体 复制和移动 特征对象 引用.生命周期.所有权 生命周期 错误处理 交叉编译 智能指针 闭包 动态分派和静态分 ...

  9. rust语法

    目录 rust语法 前言 一.数据类型 1.1 标量scalar 1.2 复合compound 1.3 切片slice 1.4 引用(借用)reference 1.5 智能指针smart pointe ...

随机推荐

  1. 羽夏看Win系统内核——保护模式篇

    写在前面   此系列是本人一个字一个字码出来的,包括示例和实验截图.由于系统内核的复杂性,故可能有错误或者不全面的地方,如有错误,欢迎批评指正,本教程将会长期更新. 如有好的建议,欢迎反馈.码字不易, ...

  2. 经过4次优化我把python代码耗时减少95%

    背景交代 团队做大学英语四六级考试相关服务.业务中有一个care服务,购买了care服务考试不过可以全额退款,不过有一个前提是要完成care服务的任务,比如坚持背单词N天,完成指定的试卷. 在这个背景 ...

  3. IntelliJ IDEA 的 Bean validation 里有什么用

    IntelliJ IDEA  的 Bean validation 是指右侧的框. 平时都是缩起来的,今天心血来潮.研究下这个是干嘛的?怎么用. 三个按钮全按下的话,下面的项目就会有三个菜单可选项. C ...

  4. Intellij IDEA 配置Junit

    导包: 1.Hamcrest Core 包:    https://mvnrepository.com/artifact/org.hamcrest/hamcrest-core/1.3 2.Junit包 ...

  5. python实现其它形态学操作

    目录: (一) 顶帽(原图像与开操作图像的差值)(二) 黑帽(原图像与闭操作图像的差值)(三) 形态学梯度  (1)基本梯度(膨胀后的图像与腐蚀后的图像差值)  (2)内部梯度(原图像减去腐蚀后的图像 ...

  6. [hdu7022]Jsljgame

    先考虑$x=y$的情况,此时即是一个平等博弈,因此考虑$sg$函数 具体的,有$sg(n)=\begin{cases}0&(n=0)\\mex(\{sg(n-i)\mid 1\le i\le ...

  7. [hdu6582]Path

    首先,从1和n跑一次dij,判断每一条边能否出现在最短路上,不能出现就删掉,然后将所有边建在图上,流量为边权,跑最小割即可. 1 #include<bits/stdc++.h> 2 usi ...

  8. [bzoj4557]侦察守卫

    令g[i][j]表示覆盖了i的子树中距离i大于等于j的所有点,f[i][j]表示覆盖了i的子树和子树外距离i小于等于j的所有点,有递推式$f[i][j]=min(f[i][j]+g[son][j],f ...

  9. .NET Core基础篇之:配置文件读取

    配置文件是每个项目最基础的部分,也是不可或缺的部分,比如:数据库连接.中间件属性等常见的配置. 今天这篇文章主要内容就是,在.Net Core项目中怎样去读取配置文件并使用. 提前准备 appsett ...

  10. [FJOI2021]游记

    高一这条命早在\(NOIP\)就没了,现在不过是强行续命罢了,希望死的不要很难看. 高二重开一档,最后一条命了,希望能高二进队\(Orz\). \(Day -2\) 开始敲板子. 先写了个交互的题,猜 ...