ROC曲线

前文讲了PR曲线

这里说ROC曲线,其描述的是TPR和FPR之间的关系

TPR是什么呢,TPR就是召回率

FPR是什么呢,FPR就是和TPR对应的,即真实值为0的一行中的预测为1的部分比例

和精准率和召回率一样,TPR和FPR之间也有着内在的联系,TPR越高,FPR越高,反之一样,ROC曲线就是刻画这样的关系的曲线

快速的实现一下TPR和FPR的函数,在python chame中的metrics中写入下列代码,依次是实现TN,FP,FN,TP,混淆矩阵,精准率,召回率,F1 score,TPR,FPR,前面部分都在前面博客有相应的原理的代码,关于TPR和FPR的,也只是将公示带入使用

代码如下

def TN(y_true, y_predict):
assert len(y_true) == len(y_predict)
return np.sum((y_true == 0) & (y_predict == 0)) def FP(y_true, y_predict):
assert len(y_true) == len(y_predict)
return np.sum((y_true == 0) & (y_predict == 1)) def FN(y_true, y_predict):
assert len(y_true) == len(y_predict)
return np.sum((y_true == 1) & (y_predict == 0)) def TP(y_true, y_predict):
assert len(y_true) == len(y_predict)
return np.sum((y_true == 1) & (y_predict == 1)) def confusion_matrix(y_true, y_predict):
return np.array([
[TN(y_true, y_predict), FP(y_true, y_predict)],
[FN(y_true, y_predict), TP(y_true, y_predict)]
]) def precision_score(y_true, y_predict):
assert len(y_true) == len(y_predict)
tp = TP(y_true, y_predict)
fp = FP(y_true, y_predict)
try:
return tp / (tp + fp)
except:
return 0.0 def recall_score(y_true, y_predict):
assert len(y_true) == len(y_predict)
tp = TP(y_true, y_predict)
fn = FN(y_true, y_predict)
try:
return tp / (tp + fn)
except:
return 0.0 def f1_score(y_true, y_predict):
precision = precision_score(y_true, y_predict)
recall = recall_score(y_true, y_predict) try:
return 2 * precision * recall / (precision + recall)
except:
return 0.0 def TPR(y_true, y_predict):
tp = TP(y_true, y_predict)
fn = FN(y_true, y_predict)
try:
return tp / (tp + fn)
except:
return 0. def FPR(y_true, y_predict):
fp = FP(y_true, y_predict)
tn = TN(y_true, y_predict)
try:
return fp / (fp + tn)
except:
return 0.

具体使用

(在notebook中)

使用手写数据集,进行先前的操作布置好需要的变量以及数据分割,不再赘述

使用封装好的FPR和TPR,和前面绘制PR曲线的思想一致,然后绘制图像

  from metrics import FPR,TPR

  fprs = []
tprs = []
thresholds = np.arange(np.min(decision_scores),np.max(decision_scores),0.1)
for threshold in thresholds:
y_predict = np.array(decision_scores >= threshold,dtype='int')
fprs.append(FPR(y_test,y_predict))
tprs.append(TPR(y_test,y_predict)) plt.plot(fprs,tprs)

图像如下

使用sklearn中的ROC曲线,调用方式和先前PR曲线的使用很像,绘制图像

  from sklearn.metrics import roc_curve

  fprs, tprs, thresholds = roc_curve(y_test,decision_scores)

  plt.plot(fprs,tprs)

图像如下(ROC曲线下的面积可以作为一个指标)

求解的话一样可以使用sklearn中的roc_auc_score,即可求出面积值的作为的指标

  from sklearn.metrics import roc_auc_score

  roc_auc_score(y_test,decision_scores)

结果如下

可以看出来,ROC的指标对偏斜的数据不算敏感,不想精准率和召回率那样敏感,所以针对极度偏斜的数据使用精准率和召回率是不错的,ROC曲线的应用场景是可以确定更好的模型,即面积更大模型

【笔记】ROC曲线的更多相关文章

  1. PR曲线,ROC曲线,AUC指标等,Accuracy vs Precision

    作为机器学习重要的评价指标,标题中的三个内容,在下面读书笔记里面都有讲: http://www.cnblogs.com/charlesblc/p/6188562.html 但是讲的不细,不太懂.今天又 ...

  2. R语言︱ROC曲线——分类器的性能表现评价

    笔者寄语:分类器算法最后都会有一个预测精度,而预测精度都会写一个混淆矩阵,所有的训练数据都会落入这个矩阵中,而对角线上的数字代表了预测正确的数目,即True Positive+True Nagetiv ...

  3. 分类器评估方法:ROC曲线

    注:本文是人工智能研究网的学习笔记 ROC是什么 二元分类器(binary classifier)的分类结果 ROC空间 最好的预测模型在左上角,代表100%的灵敏度和0%的虚警率,被称为完美分类器. ...

  4. Mean Average Precision(mAP),Precision,Recall,Accuracy,F1_score,PR曲线、ROC曲线,AUC值,决定系数R^2 的含义与计算

    背景   之前在研究Object Detection的时候,只是知道Precision这个指标,但是mAP(mean Average Precision)具体是如何计算的,暂时还不知道.最近做OD的任 ...

  5. ROC曲线、PR曲线

    在论文的结果分析中,ROC和PR曲线是经常用到的两个有力的展示图. 1.ROC曲线 ROC曲线(receiver operating characteristic)是一种对于灵敏度进行描述的功能图像. ...

  6. 精确率与召回率,RoC曲线与PR曲线

    在机器学习的算法评估中,尤其是分类算法评估中,我们经常听到精确率(precision)与召回率(recall),RoC曲线与PR曲线这些概念,那这些概念到底有什么用处呢? 首先,我们需要搞清楚几个拗口 ...

  7. 【数据挖掘】朴素贝叶斯算法计算ROC曲线的面积

    题记:          近来关于数据挖掘学习过程中,学习到朴素贝叶斯运算ROC曲线.也是本节实验课题,roc曲线的计算原理以及如果统计TP.FP.TN.FN.TPR.FPR.ROC面积等等.往往运用 ...

  8. 机器学习之分类器性能指标之ROC曲线、AUC值

    分类器性能指标之ROC曲线.AUC值 一 roc曲线 1.roc曲线:接收者操作特征(receiveroperating characteristic),roc曲线上每个点反映着对同一信号刺激的感受性 ...

  9. [zz] ROC曲线

    wiki https://zh.wikipedia.org/wiki/ROC%E6%9B%B2%E7%BA%BF 在信号检测理论中,接收者操作特征曲线(receiver operating chara ...

随机推荐

  1. webpack(11)配置文件分离为开发配置、生成配置和基础配置

    前言 上篇我们已经配置好了本地开发服务器,但是配置的相对比较凌乱,一个文件中有些是开发时用到的配置,有些是生成时用到的配置,有些是开发和生成都要用到的配置,所以我们这里把环境分为3个环境 webpac ...

  2. Linux下如何使用Rsync备份服务器重要数据

    Rsync介绍: Rsync英文全称Remote synchronization,从软件的名称就可以看出来,Rsync具有可使本地和远程两台主机之间的数据快速复制同步镜像,远程备份的功能,这个功能类似 ...

  3. Springboot中Rest风格请求映射如何开启并使用

    问题引入 因为前端页面只能请求两种方式:GET请求和POST请求,所以就需要后台对其进行处理 解决办法:通过springmvc中提供的HiddenHttpMethodFilter过滤器来实现 而由于我 ...

  4. c++ 进制转换源代码

    #include<stdio.h> int main() { char ku[16]={'0','1','2','3','4','5','6','7','8','9','A','B','C ...

  5. PyVista:一款Python的三维可视化软件

    技术背景 三维可视化是一项在工业领域中非常重要的技术,而Python中最热门的可视化工具matplotlib和plotly,更加倾向于在数据领域的可视化,用于展现数据的结果.类似的还有百度的pyech ...

  6. python + mysql 实现输入数据

    实例如下: import datetimeimport pymysqldef insert_into(): db = pymysql.connect("localhost",&qu ...

  7. PAT甲级:1066 Root of AVL Tree (25分)

    PAT甲级:1066 Root of AVL Tree (25分) 题干 An AVL tree is a self-balancing binary search tree. In an AVL t ...

  8. 手机端web网页布局经验总结(持续更新中)

    1. 首先,在网页代码的头部,加入一行viewport元标签,我们一般是不让用户手动的去改变页面的大小的. <meta name="viewport" content=&qu ...

  9. js排序——sort()排序用法

    sort() 方法用于对数组的元素进行排序,并返回数组.默认排序顺序是根据字符串Unicode码点. 语法:array.sort(fun):参数fun可选.规定排序顺序.必须是函数.注:如果调用该方法 ...

  10. HTTP_CLIENT_IP、HTTP_X_FORWARDED_FOR、REMOTE_ADDR

    REMOTE_ADDR 是你的客户端跟你的服务器"握手"时候的IP.如果使用了"匿名代理",REMOTE_ADDR将显示代理服务器的IP. HTTP_CLIEN ...