Drainage Ditches
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 67387   Accepted: 26035

Description

Every time it rains on Farmer John's fields, a pond forms over Bessie's favorite clover patch. This means that the clover is covered by water for awhile and takes quite a long time to regrow. Thus, Farmer John has built a set of drainage ditches so that Bessie's
clover patch is never covered in water. Instead, the water is drained to a nearby stream. Being an ace engineer, Farmer John has also installed regulators at the beginning of each ditch, so he can control at what rate water flows into that ditch. 

Farmer John knows not only how many gallons of water each ditch can transport per minute but also the exact layout of the ditches, which feed out of the pond and into each other and stream in a potentially complex network. 

Given all this information, determine the maximum rate at which water can be transported out of the pond and into the stream. For any given ditch, water flows in only one direction, but there might be a way that water can flow in a circle. 

Input

The input includes several cases. For each case, the first line contains two space-separated integers, N (0 <= N <= 200) and M (2 <= M <= 200). N is the number of ditches that Farmer John has dug. M is the number of intersections points
for those ditches. Intersection 1 is the pond. Intersection point M is the stream. Each of the following N lines contains three integers, Si, Ei, and Ci. Si and Ei (1 <= Si, Ei <= M) designate the intersections between which this ditch flows. Water will flow
through this ditch from Si to Ei. Ci (0 <= Ci <= 10,000,000) is the maximum rate at which water will flow through the ditch.

Output

For each case, output a single integer, the maximum rate at which water may emptied from the pond.

Sample Input

5 4
1 2 40
1 4 20
2 4 20
2 3 30
3 4 10

Sample Output

50

_________________________________________________________________

这好像是道网络流模板题

但为何我做得一点模板样都没有

/*POJ1273 Drainage Ditches*/
//网络流模板题
#include<iostream>
#include<cstdio>
#include<vector>
#include<algorithm>
#include<cmath>
#include<queue>
#include<cstring>
using namespace std;
const int INF=1000000;
struct Ed{
int f,t;
int cap,flow;
Ed(int u,int v,int c,int f):f(u),t(v),cap(c),flow(f){}
};
int s,n,m;//起点,结点数,终点
vector<Ed> e;//边
vector<int> G[2000];//邻接表,存储边序号
int a[600];//残量
int p[600];//保存线路用以回溯
//
void clear1(int n){//初始化
for(int i=0;i<=n;i++) G[i].clear();
e.clear();
}
void add_edge(int from,int to,int cap){//添加边,正反向边相邻存储
e.push_back(Ed(from,to,cap,0));
e.push_back(Ed(to,from,0,0));
int si=e.size();
G[from].push_back(si-2);
G[to].push_back(si-1);//相邻两条边分别加入邻接表
return;
}
int fl(){
int res=0,i;
for(;;){//BFS
memset(a,0,sizeof(a));
queue<int>q;
q.push(s);
a[s]=INF;
while(!q.empty()){
int x=q.front();//本轮出发点
q.pop();
for(i=0;i<G[x].size();i++){
Ed& edge=e[G[x][i]];
if(!a[edge.t] && edge.cap>edge.flow){//之前未到达,且结点有剩余流量
a[edge.t]=min(a[x],edge.cap-edge.flow);
p[edge.t]=G[x][i];
q.push(edge.t);
} <pre name="code" class="cpp"> if(a[m])break;//找到增广路,退出

}if(!a[m])break;//无增广路,结束 for(int u=m;u!=s;u=e[p[u]].f){e[p[u]].flow+=a[m];// e[p[u]^1].flow-=a[m];}res+=a[m];}return res;}int main(){s=1;while(scanf("%d%d",&n,&m)!=EOF){clear1(n);int i,j,u,v,c;for(i=1;i<=n;i++){scanf("%d%d%d",&u,&v,&c);add_edge(u,v,c);}printf("%d\n",fl());}return
0;}

												

POJ 1273 Drainage Ditches的更多相关文章

  1. poj 1273 Drainage Ditches(最大流)

    http://poj.org/problem?id=1273 Drainage Ditches Time Limit: 1000MS   Memory Limit: 10000K Total Subm ...

  2. POJ 1273 Drainage Ditches (网络最大流)

    http://poj.org/problem? id=1273 Drainage Ditches Time Limit: 1000MS   Memory Limit: 10000K Total Sub ...

  3. poj 1273 Drainage Ditches 最大流入门题

    题目链接:http://poj.org/problem?id=1273 Every time it rains on Farmer John's fields, a pond forms over B ...

  4. POJ 1273 - Drainage Ditches - [最大流模板题] - [EK算法模板][Dinic算法模板 - 邻接表型]

    题目链接:http://poj.org/problem?id=1273 Time Limit: 1000MS Memory Limit: 10000K Description Every time i ...

  5. POJ 1273 Drainage Ditches题解——S.B.S.

    Drainage Ditches Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 67823   Accepted: 2620 ...

  6. POJ 1273 Drainage Ditches -dinic

    dinic版本 感觉dinic算法好帅,比Edmonds-Karp算法不知高到哪里去了 Description Every time it rains on Farmer John's fields, ...

  7. Poj 1273 Drainage Ditches(最大流 Edmonds-Karp )

    题目链接:poj1273 Drainage Ditches 呜呜,今天自学网络流,看了EK算法,学的晕晕的,留个简单模板题来作纪念... #include<cstdio> #include ...

  8. POJ 1273 Drainage Ditches(网络流dinic算法模板)

    POJ 1273给出M条边,N个点,求源点1到汇点N的最大流量. 本文主要就是附上dinic的模板,供以后参考. #include <iostream> #include <stdi ...

  9. 网络流最经典的入门题 各种网络流算法都能AC。 poj 1273 Drainage Ditches

    Drainage Ditches 题目抽象:给你m条边u,v,c.   n个定点,源点1,汇点n.求最大流.  最好的入门题,各种算法都可以拿来练习 (1):  一般增广路算法  ford() #in ...

随机推荐

  1. 在Azure上搭建Orchard CRM入口网站

    这是英文版:Setup Orchard CRM portal website on Azure

  2. 在线音乐网站【03】Part one 功能实现

    今天打算把网站功能的具体实现给总结一下,如果你想了解整个小项目,建议你先看看前面2篇博客. 1.在线音乐网站(1)需求和功能结构 2.在线音乐网站(2)数据库和开发环境 7.网站主要模块实现 a.在线 ...

  3. JavaScript文件加载器LABjs API详解

    在<高性能JavaScript>一书中提到了LABjs这个用来加载JavaScript文件的类库,LABjs是Loading And Blocking JavaScript的缩写,顾名思义 ...

  4. 给Asp.Net MVC及WebApi添加路由优先级

    一.为什么需要路由优先级 大家都知道我们在Asp.Net MVC项目或WebApi项目中注册路由是没有优先级的,当项目比较大.或有多个区域.或多个Web项目.或采用插件式框架开发时,我们的路由注册很可 ...

  5. 让你彻底理解 “==”与 Equals

    相信很多朋友在面对,对象判等时经常会犹豫是用“==”还是Equals呢?有时候发现两者得到的结果相同,但有时候有不同, 究竟在什么情况下"==" 会相等,什么情况下Equals会不 ...

  6. 用canvas画“哆啦A梦”时钟

    前言:今天看完了Js书的canvas画布那张,好开心~又是心爱的canvas~欧耶~ 之前看到有人建议我画蓝胖子,对哦,我怎么把童年最喜欢的蓝胖子忘了,为了表达我对蓝胖子的歉意,所以今天画了会动的he ...

  7. 深入理解计算机系统(2.7)---二进制浮点数,IEEE标准(重要)

    2.6我们进行了二进制整数运算的最后一役,本次LZ将和各位一起进入浮点数的世界,这里没有无符号,没有补码,但是有各种各样的惊奇.倘若你真正的进入了浮点数的世界,一定会发现它原来是这么有意思,而不是像之 ...

  8. HBase初探

    string hbaseCluster = "https://charju.azurehdinsight.net"; string hadoopUsername = "账 ...

  9. pdo知识总结

    PDO 用了这么久了这里抽时间总结下: pdo (php data object) 是php5 新出来的支持 mysql 操作的一个功能.用其可代替mysqli扩展.因为是php自带的.所以我觉得效率 ...

  10. java中的URLConnection

    *URLConnection是个抽象类,它有两个直接子类分别是HttpURLConnection和JarURLConnection.另外一个重要的类是URL,通常URL可以通过传给构造器一个Strin ...