Drainage Ditches
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 67387   Accepted: 26035

Description

Every time it rains on Farmer John's fields, a pond forms over Bessie's favorite clover patch. This means that the clover is covered by water for awhile and takes quite a long time to regrow. Thus, Farmer John has built a set of drainage ditches so that Bessie's
clover patch is never covered in water. Instead, the water is drained to a nearby stream. Being an ace engineer, Farmer John has also installed regulators at the beginning of each ditch, so he can control at what rate water flows into that ditch. 

Farmer John knows not only how many gallons of water each ditch can transport per minute but also the exact layout of the ditches, which feed out of the pond and into each other and stream in a potentially complex network. 

Given all this information, determine the maximum rate at which water can be transported out of the pond and into the stream. For any given ditch, water flows in only one direction, but there might be a way that water can flow in a circle. 

Input

The input includes several cases. For each case, the first line contains two space-separated integers, N (0 <= N <= 200) and M (2 <= M <= 200). N is the number of ditches that Farmer John has dug. M is the number of intersections points
for those ditches. Intersection 1 is the pond. Intersection point M is the stream. Each of the following N lines contains three integers, Si, Ei, and Ci. Si and Ei (1 <= Si, Ei <= M) designate the intersections between which this ditch flows. Water will flow
through this ditch from Si to Ei. Ci (0 <= Ci <= 10,000,000) is the maximum rate at which water will flow through the ditch.

Output

For each case, output a single integer, the maximum rate at which water may emptied from the pond.

Sample Input

5 4
1 2 40
1 4 20
2 4 20
2 3 30
3 4 10

Sample Output

50

_________________________________________________________________

这好像是道网络流模板题

但为何我做得一点模板样都没有

/*POJ1273 Drainage Ditches*/
//网络流模板题
#include<iostream>
#include<cstdio>
#include<vector>
#include<algorithm>
#include<cmath>
#include<queue>
#include<cstring>
using namespace std;
const int INF=1000000;
struct Ed{
int f,t;
int cap,flow;
Ed(int u,int v,int c,int f):f(u),t(v),cap(c),flow(f){}
};
int s,n,m;//起点,结点数,终点
vector<Ed> e;//边
vector<int> G[2000];//邻接表,存储边序号
int a[600];//残量
int p[600];//保存线路用以回溯
//
void clear1(int n){//初始化
for(int i=0;i<=n;i++) G[i].clear();
e.clear();
}
void add_edge(int from,int to,int cap){//添加边,正反向边相邻存储
e.push_back(Ed(from,to,cap,0));
e.push_back(Ed(to,from,0,0));
int si=e.size();
G[from].push_back(si-2);
G[to].push_back(si-1);//相邻两条边分别加入邻接表
return;
}
int fl(){
int res=0,i;
for(;;){//BFS
memset(a,0,sizeof(a));
queue<int>q;
q.push(s);
a[s]=INF;
while(!q.empty()){
int x=q.front();//本轮出发点
q.pop();
for(i=0;i<G[x].size();i++){
Ed& edge=e[G[x][i]];
if(!a[edge.t] && edge.cap>edge.flow){//之前未到达,且结点有剩余流量
a[edge.t]=min(a[x],edge.cap-edge.flow);
p[edge.t]=G[x][i];
q.push(edge.t);
} <pre name="code" class="cpp"> if(a[m])break;//找到增广路,退出

}if(!a[m])break;//无增广路,结束 for(int u=m;u!=s;u=e[p[u]].f){e[p[u]].flow+=a[m];// e[p[u]^1].flow-=a[m];}res+=a[m];}return res;}int main(){s=1;while(scanf("%d%d",&n,&m)!=EOF){clear1(n);int i,j,u,v,c;for(i=1;i<=n;i++){scanf("%d%d%d",&u,&v,&c);add_edge(u,v,c);}printf("%d\n",fl());}return
0;}

												

POJ 1273 Drainage Ditches的更多相关文章

  1. poj 1273 Drainage Ditches(最大流)

    http://poj.org/problem?id=1273 Drainage Ditches Time Limit: 1000MS   Memory Limit: 10000K Total Subm ...

  2. POJ 1273 Drainage Ditches (网络最大流)

    http://poj.org/problem? id=1273 Drainage Ditches Time Limit: 1000MS   Memory Limit: 10000K Total Sub ...

  3. poj 1273 Drainage Ditches 最大流入门题

    题目链接:http://poj.org/problem?id=1273 Every time it rains on Farmer John's fields, a pond forms over B ...

  4. POJ 1273 - Drainage Ditches - [最大流模板题] - [EK算法模板][Dinic算法模板 - 邻接表型]

    题目链接:http://poj.org/problem?id=1273 Time Limit: 1000MS Memory Limit: 10000K Description Every time i ...

  5. POJ 1273 Drainage Ditches题解——S.B.S.

    Drainage Ditches Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 67823   Accepted: 2620 ...

  6. POJ 1273 Drainage Ditches -dinic

    dinic版本 感觉dinic算法好帅,比Edmonds-Karp算法不知高到哪里去了 Description Every time it rains on Farmer John's fields, ...

  7. Poj 1273 Drainage Ditches(最大流 Edmonds-Karp )

    题目链接:poj1273 Drainage Ditches 呜呜,今天自学网络流,看了EK算法,学的晕晕的,留个简单模板题来作纪念... #include<cstdio> #include ...

  8. POJ 1273 Drainage Ditches(网络流dinic算法模板)

    POJ 1273给出M条边,N个点,求源点1到汇点N的最大流量. 本文主要就是附上dinic的模板,供以后参考. #include <iostream> #include <stdi ...

  9. 网络流最经典的入门题 各种网络流算法都能AC。 poj 1273 Drainage Ditches

    Drainage Ditches 题目抽象:给你m条边u,v,c.   n个定点,源点1,汇点n.求最大流.  最好的入门题,各种算法都可以拿来练习 (1):  一般增广路算法  ford() #in ...

随机推荐

  1. 两个Canvas小游戏

    或许连小游戏都算不上,可以叫做mini游戏. 没有任何框架或者稍微有点深度的东西,所以有js基础的或者要追求炫酷效果的可以直接ctrl+w了. 先贴出两个游戏的试玩地址: 是男人就走30步 是男人就忍 ...

  2. WPF 异步加载高清大图

    不管什么东西,但凡太大了,总是让人又爱又恨啊!(很有道理的样子,大家鼓掌└( ̄  ̄└)(┘ ̄  ̄)┘) 猿:老板,现在这社会啊,真是浮躁啊,之前还是什么1080P,然后就到了2K,现在又到了4K……他 ...

  3. 教你写一个web远程控制小工具

    惯例先上图 晚上躺床上了,发现忘关电脑了,又不想起来关,来用手机控制电脑多好,百度了下,果然一大把.哈,我自己为什么不自己也实现个呢,任意的自己diy.Just do it. 如果不想看如何实现,那么 ...

  4. [codeforces 519E]E. A and B and Lecture Rooms(树上倍增)

    题目:http://codeforces.com/problemset/problem/519/E 题意:给你一个n个点的树,有m个询问(x,y),对于每个询问回答树上有多少个点和x,y点的距离相等 ...

  5. LCA倍增算法的错误与模板

    先上我原来的错误的代码 type node=^link; link=record num:int64; next:node; end; var fa:..,..] of int64; dep:..] ...

  6. Congruence relation 同余关系

    https://en.wikipedia.org/wiki/Congruence_relation https://zh.wikipedia.org/wiki/%E5%90%8C%E9%A4%98%E ...

  7. Hadoop2.6.0伪分布环境搭建

    用到的软件: 一.安装jdk: 1.要安装的jdk,我把它拷在了共享文件夹里面.   (用优盘拷也可以) 2.我把jdk拷在了用户文件夹下面. (其他地方也可以,不过路径要相应改变) 3.执行复制安装 ...

  8. Java--剑指offer(8)

    36.输入两个链表,找出它们的第一个公共结点. 解题思路:这里主要是把两个链表的节点都放入两个栈中,这样就可以按照出栈的方式来比较节点,因为单链表只要是有相同的节点,那么之后的节点也都是一样的,所以如 ...

  9. iOS开发中的错误整理,百思项目'我的'模块,tableFooterViewHeight的问题.提醒自己对KVO和Block的运用欠缺

    一.错误分析:由于tableFooterView中的数据是通过请求服务器后得到的,tableFooterViewHeight也是根据请求过来的数据经过布局子控件而计算出来的.(注意:计算高度是在子线程 ...

  10. 【BZOJ 1051】【HAOI 2006】受欢迎的牛

    tarjan缩点模板 #include<cstdio> #include<cstring> #include<algorithm> using namespace ...