Drainage Ditches
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 67387   Accepted: 26035

Description

Every time it rains on Farmer John's fields, a pond forms over Bessie's favorite clover patch. This means that the clover is covered by water for awhile and takes quite a long time to regrow. Thus, Farmer John has built a set of drainage ditches so that Bessie's
clover patch is never covered in water. Instead, the water is drained to a nearby stream. Being an ace engineer, Farmer John has also installed regulators at the beginning of each ditch, so he can control at what rate water flows into that ditch. 

Farmer John knows not only how many gallons of water each ditch can transport per minute but also the exact layout of the ditches, which feed out of the pond and into each other and stream in a potentially complex network. 

Given all this information, determine the maximum rate at which water can be transported out of the pond and into the stream. For any given ditch, water flows in only one direction, but there might be a way that water can flow in a circle. 

Input

The input includes several cases. For each case, the first line contains two space-separated integers, N (0 <= N <= 200) and M (2 <= M <= 200). N is the number of ditches that Farmer John has dug. M is the number of intersections points
for those ditches. Intersection 1 is the pond. Intersection point M is the stream. Each of the following N lines contains three integers, Si, Ei, and Ci. Si and Ei (1 <= Si, Ei <= M) designate the intersections between which this ditch flows. Water will flow
through this ditch from Si to Ei. Ci (0 <= Ci <= 10,000,000) is the maximum rate at which water will flow through the ditch.

Output

For each case, output a single integer, the maximum rate at which water may emptied from the pond.

Sample Input

5 4
1 2 40
1 4 20
2 4 20
2 3 30
3 4 10

Sample Output

50

_________________________________________________________________

这好像是道网络流模板题

但为何我做得一点模板样都没有

/*POJ1273 Drainage Ditches*/
//网络流模板题
#include<iostream>
#include<cstdio>
#include<vector>
#include<algorithm>
#include<cmath>
#include<queue>
#include<cstring>
using namespace std;
const int INF=1000000;
struct Ed{
int f,t;
int cap,flow;
Ed(int u,int v,int c,int f):f(u),t(v),cap(c),flow(f){}
};
int s,n,m;//起点,结点数,终点
vector<Ed> e;//边
vector<int> G[2000];//邻接表,存储边序号
int a[600];//残量
int p[600];//保存线路用以回溯
//
void clear1(int n){//初始化
for(int i=0;i<=n;i++) G[i].clear();
e.clear();
}
void add_edge(int from,int to,int cap){//添加边,正反向边相邻存储
e.push_back(Ed(from,to,cap,0));
e.push_back(Ed(to,from,0,0));
int si=e.size();
G[from].push_back(si-2);
G[to].push_back(si-1);//相邻两条边分别加入邻接表
return;
}
int fl(){
int res=0,i;
for(;;){//BFS
memset(a,0,sizeof(a));
queue<int>q;
q.push(s);
a[s]=INF;
while(!q.empty()){
int x=q.front();//本轮出发点
q.pop();
for(i=0;i<G[x].size();i++){
Ed& edge=e[G[x][i]];
if(!a[edge.t] && edge.cap>edge.flow){//之前未到达,且结点有剩余流量
a[edge.t]=min(a[x],edge.cap-edge.flow);
p[edge.t]=G[x][i];
q.push(edge.t);
} <pre name="code" class="cpp"> if(a[m])break;//找到增广路,退出

}if(!a[m])break;//无增广路,结束 for(int u=m;u!=s;u=e[p[u]].f){e[p[u]].flow+=a[m];// e[p[u]^1].flow-=a[m];}res+=a[m];}return res;}int main(){s=1;while(scanf("%d%d",&n,&m)!=EOF){clear1(n);int i,j,u,v,c;for(i=1;i<=n;i++){scanf("%d%d%d",&u,&v,&c);add_edge(u,v,c);}printf("%d\n",fl());}return
0;}

												

POJ 1273 Drainage Ditches的更多相关文章

  1. poj 1273 Drainage Ditches(最大流)

    http://poj.org/problem?id=1273 Drainage Ditches Time Limit: 1000MS   Memory Limit: 10000K Total Subm ...

  2. POJ 1273 Drainage Ditches (网络最大流)

    http://poj.org/problem? id=1273 Drainage Ditches Time Limit: 1000MS   Memory Limit: 10000K Total Sub ...

  3. poj 1273 Drainage Ditches 最大流入门题

    题目链接:http://poj.org/problem?id=1273 Every time it rains on Farmer John's fields, a pond forms over B ...

  4. POJ 1273 - Drainage Ditches - [最大流模板题] - [EK算法模板][Dinic算法模板 - 邻接表型]

    题目链接:http://poj.org/problem?id=1273 Time Limit: 1000MS Memory Limit: 10000K Description Every time i ...

  5. POJ 1273 Drainage Ditches题解——S.B.S.

    Drainage Ditches Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 67823   Accepted: 2620 ...

  6. POJ 1273 Drainage Ditches -dinic

    dinic版本 感觉dinic算法好帅,比Edmonds-Karp算法不知高到哪里去了 Description Every time it rains on Farmer John's fields, ...

  7. Poj 1273 Drainage Ditches(最大流 Edmonds-Karp )

    题目链接:poj1273 Drainage Ditches 呜呜,今天自学网络流,看了EK算法,学的晕晕的,留个简单模板题来作纪念... #include<cstdio> #include ...

  8. POJ 1273 Drainage Ditches(网络流dinic算法模板)

    POJ 1273给出M条边,N个点,求源点1到汇点N的最大流量. 本文主要就是附上dinic的模板,供以后参考. #include <iostream> #include <stdi ...

  9. 网络流最经典的入门题 各种网络流算法都能AC。 poj 1273 Drainage Ditches

    Drainage Ditches 题目抽象:给你m条边u,v,c.   n个定点,源点1,汇点n.求最大流.  最好的入门题,各种算法都可以拿来练习 (1):  一般增广路算法  ford() #in ...

随机推荐

  1. Linux shell循环

    条件测试 格式 test condition 或 [ condition ] 使用方括号时,要注意在条件两边加上空格,如果有操作符,运算符之间也必须有空格 测试状态:测试的结果可以用$?的值来判断,0 ...

  2. youtube下载

    http://jingyan.baidu.com/article/39810a23d2deb2b637fda66c.html

  3. Putty颜色设置

    默认的Putty颜色和字体太不好看了,得自己设置: 字体:毫无疑问Consolas, 10-point:看起来非常清新自然 颜色: * Default Foreground: 255/255/255  ...

  4. FineUI v3.3.2发布!目前最稳定版本,五年陈酿!

    关于FineUI基于 ExtJS 的专业 ASP.NET 控件库. FineUI的使命创建 No JavaScript,No CSS,No UpdatePanel,No ViewState,No We ...

  5. 由一次程序崩溃引起的对new表达式的再次学习

    1. 起因 某天,一个同事跟我反馈说在windows上调试公司产品的一个交易核心时出现了使用未初始化的指针导致后台服务崩溃的情况.示例代码如下所示: struct sample { ][]; //.. ...

  6. 没有jquery的时候,你看看这个

    vjs var br = (function() { var ua = navigator.userAgent.toLowerCase(); browser = { iPhone: /iphone/. ...

  7. MSSQL 问题集锦

    [1]关于SQL Server数据库连接字符串的特殊参数说明 MultipleActiveResultSets和Mars_Connection同义,指定此数据库连接是否复用数据库内已建立的相同用户的连 ...

  8. matlab 绘制条形图

    Matlab使用bar和barh函数来绘制二维条形图.分别是绘制二维垂直条形图和二维水平条形图. 转自:http://jingyan.baidu.com/article/64d05a02524e63d ...

  9. Allegro 中手动制作螺丝孔封装

    以直径2.5mm的螺丝孔为例: 添加过孔,通常过孔的尺寸稍大于实际的螺丝直径,这里设置为2.8mm的直径. 添加过孔焊盘的其他属性. 制作边上的小焊盘. 新建Package Symbol然后点击Lay ...

  10. [转]Windows系统注册表知识完全揭密

    来源:http://www.jb51.net/article/3328.htm Windows注册表是帮助Windows控制硬件.软件.用户环境和Windows界面的一套数据文件,注册表包含在Wind ...