Time Limit: 433MS   Memory Limit: 1572864KB   64bit IO Format: %lld & %llu

Description

You are given a tree (an undirected acyclic connected graph) with N nodes, and edges numbered 1, 2, 3...N-1. Each edge has an integer value assigned to it, representing its length.

We will ask you to perfrom some instructions of the following form:

  • DIST a b : ask for the distance between node a and node b
    or
  • KTH a b k : ask for the k-th node on the path from node a to node b

Example:
N = 6 
1 2 1 // edge connects node 1 and node 2 has cost 1 
2 4 1 
2 5 2 
1 3 1 
3 6 2

Path from node 4 to node 6 is 4 -> 2 -> 1 -> 3 -> 6 
DIST 4 6 : answer is 5 (1 + 1 + 1 + 2 = 5) 
KTH 4 6 4 : answer is 3 (the 4-th node on the path from node 4 to node 6 is 3)

Input

The first line of input contains an integer t, the number of test cases (t <= 25). t test cases follow.

For each test case:

  • In the first line there is an integer N (N <= 10000)
  • In the next N-1 lines, the i-th line describes the i-th edge: a line with three integers a b c denotes an edge between ab of cost c (c <= 100000)
  • The next lines contain instructions "DIST a b" or "KTH a b k"
  • The end of each test case is signified by the string "DONE".

There is one blank line between successive tests.

Output

For each "DIST" or "KTH" operation, write one integer representing its result.

Print one blank line after each test.

Example

Input:
1 6
1 2 1
2 4 1
2 5 2
1 3 1
3 6 2
DIST 4 6
KTH 4 6 4
DONE Output:
5
3

Hint

Added by: Thanh-Vy Hua
Date: 2006-08-27
Time limit: 0.433s
Source limit: 15000B
Memory limit: 1536MB
Cluster: Cube (Intel G860)
Languages: All except: ERL JS NODEJS PERL 6 VB.net
Resource: Special thanks to Ivan Krasilnikov for his alternative solution

有两种操作,一是求两点间距离,二是求一点到另一点路径上的第k个点。

LCA妥妥的。

 /*by SilverN*/
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<vector>
using namespace std;
const int mxn=;
int read(){
int x=,f=;char ch=getchar();
while(ch<'' || ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>='' && ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
struct edge{
int v,nxt,dis;
}e[mxn<<];
int hd[mxn],mct=;
void add_edge(int u,int v,int d){
e[++mct].v=v;e[mct].nxt=hd[u];e[mct].dis=d;hd[u]=mct;return;
}
int T,n;
int fa[mxn][];
int dep[mxn];
int dis[mxn];
void init(){memset(hd,,sizeof hd);memset(fa,,sizeof fa);mct=;}
void DFS(int u,int f){
dep[u]=dep[f]+;
for(int i=;i<;i++)fa[u][i]=fa[fa[u][i-]][i-];
for(int i=hd[u];i;i=e[i].nxt){
int v=e[i].v;
if(v==f)continue;
fa[v][]=u;
dis[v]=dis[u]+e[i].dis;
DFS(v,u);
}
return;
}
int LCA(int x,int y){
if(dep[x]<dep[y])swap(x,y);
for(int i=;i>=;i--)
if(dep[fa[x][i]]>=dep[y])x=fa[x][i];
if(x==y)return y;
for(int i=;i>=;i--){
if(fa[x][i]!=fa[y][i])x=fa[x][i],y=fa[y][i];
}
return fa[x][];
}
inline int dist(int x,int y){//求距离
int tmp=LCA(x,y);
return dis[x]+dis[y]-dis[tmp]*;
}
inline int find(int x,int k){//上溯
for(int i=;i>=;i--){
if(k&(<<i))x=fa[x][i];
}
return x;
}
inline int solve(int x,int y,int k){//查询从x到y路径上第k个结点
int tmp=LCA(x,y);
int mid=dep[x]-dep[tmp]+;
if(k==mid)return tmp;
if(k>mid){
int dd=dep[y]-dep[tmp]+;
mid=k-mid+;
k=dd-mid;
return find(y,k);
}
else
return find(x,k-);
}
int main(){
T=read();
int i,j,x,y,d;
while(T--){
init();
n=read();
for(i=;i<n;i++){
x=read();y=read();d=read();
add_edge(x,y,d);
add_edge(y,x,d);
}
int rt=n/+;
dis[rt]=;
DFS(rt,);
char op[];
while(scanf("%s",op) && (op[]!='D' || op[]!='O')){
if(op[]=='K'){
x=read();y=read();d=read();
printf("%d\n",solve(x,y,d));
}
if(op[]=='D'){
x=read();y=read();
printf("%d\n",dist(x,y));
}
}
}
return ;
}

SPOJ913 Query on a tree II的更多相关文章

  1. LCA SP913 QTREE2 - Query on a tree II

    SP913 QTREE2 - Query on a tree II 给定一棵n个点的树,边具有边权.要求作以下操作: DIST a b 询问点a至点b路径上的边权之和 KTH a b k 询问点a至点 ...

  2. spoj 913 Query on a tree II (倍增lca)

    Query on a tree II You are given a tree (an undirected acyclic connected graph) with N nodes, and ed ...

  3. [SPOJ913]QTREE2 - Query on a tree II【倍增LCA】

    题目描述 [传送门] 题目大意 给一棵树,有两种操作: 求(u,v)路径的距离. 求以u为起点,v为终点的第k的节点. 分析 比较简单的倍增LCA模板题. 首先对于第一问,我们只需要预处理出根节点到各 ...

  4. 【SPOJ QTREE2】QTREE2 - Query on a tree II(LCA)

    You are given a tree (an undirected acyclic connected graph) with N nodes, and edges numbered 1, 2, ...

  5. Query on a tree II 倍增LCA

    You are given a tree (an undirected acyclic connected graph) with N nodes, and edges numbered 1, 2, ...

  6. LCA【SP913】Qtree - Query on a tree II

    Description 给定一棵n个点的树,边具有边权.要求作以下操作: DIST a b 询问点a至点b路径上的边权之和 KTH a b k 询问点a至点b有向路径上的第k个点的编号 有多组测试数据 ...

  7. SPOJ Query on a tree II (树剖||倍增LCA)(占位)

    You are given a tree (an undirected acyclic connected graph) with N nodes, and edges numbered 1, 2, ...

  8. SPOJ 913 Query on a tree II

    spoj题面 Time limit 433 ms //spoj的时限都那么奇怪 Memory limit 1572864 kB //1.5个G,疯了 Code length Limit 15000 B ...

  9. QTREE2 spoj 913. Query on a tree II 经典的倍增思想

    QTREE2 经典的倍增思想 题目: 给出一棵树,求: 1.两点之间距离. 2.从节点x到节点y最短路径上第k个节点的编号. 分析: 第一问的话,随便以一个节点为根,求得其他节点到根的距离,然后对于每 ...

随机推荐

  1. Burndown chart

    S型的燃尽图 在一次milestone开发过程中,开发者会持续编辑issue列表,每个issue都有自己的生命周期.燃尽图预期这些issues会被线性的消灭掉,所以从第一天直接到最后一天画个直线表示预 ...

  2. 谈谈patch strategy

    所谓的patch strategy,就是软件发布后出现bug时打补丁的方式 - 主要是关于源代码branch如何组织的方式 针对项目的开发阶段.开发状态.维护方式不同,可以有不同的patching s ...

  3. WPF制作的小型笔记本-仿有道云笔记

    楼主所在的公司不允许下载外部资源, 不允许私自安装应用程序, 平时记录东西都是用记事本,时间久了很难找到以前记的东西. 平时在家都用有道笔记, 因此就模仿着做了一个, 先看下实际运行图片: 1. 初始 ...

  4. 开源 XFControls , 用于 Xamarin.Forms 的自定义控件集

    从此以后不会在博客园上发表任何言论,观注我的同志们,洗洗睡吧. ---------------------- 博文移至: http://www.jianshu.com/p/3ed1a3f10955

  5. Ext.NET-布局篇

    概述 前一篇介绍了Ext.NET基础知识,并对Ext.NET布局进行了简要的说明,本文中我们用一个完整的示例代码来看看Ext.NET的布局. 示例代码下载地址>>>>> ...

  6. [CF#250 Div.2 D]The Child and Zoo(并查集)

    题目:http://codeforces.com/problemset/problem/437/D 题意:有n个点,m条边的无向图,保证所有点都能互通,n,m<=10^5 每个点都有权值,每条边 ...

  7. 求height数组

    procedure getheight; var i,po1,po2:longint; begin to len do begin ; po1:=i;po2:=sa[rank[i]-]; while ...

  8. 阿里巴巴高新能数据源com.alibaba.druid.pool.DruidDataSource的jar包配置

    aspectjweaver-1.7.4.jar druid-0.2.9.jar 两个包,用于提供com.alibaba.druid.pool.DruidDataSource

  9. -Dmaven.multiModuleProjectDirectory system propery is not set. Check $M2_HOME environment variable and mvn script match.

    一, eclipse中使用maven插件的时候,运行run as maven build的时候报错 -Dmaven.multiModuleProjectDirectory system propery ...

  10. RabbitMQ 工作队列

    创建一个工作队列用来在工作者(consumer)间分发耗时任务. 工作队列的主要任务是:避免立刻执行资源密集型任务,然后必须等待其完成.相反地,我们进行任务调度:我们把任务封装为消息发送给队列.工作进 ...