SPOJ913 Query on a tree II
| Time Limit: 433MS | Memory Limit: 1572864KB | 64bit IO Format: %lld & %llu |
Description
You are given a tree (an undirected acyclic connected graph) with N nodes, and edges numbered 1, 2, 3...N-1. Each edge has an integer value assigned to it, representing its length.
We will ask you to perfrom some instructions of the following form:
- DIST a b : ask for the distance between node a and node b
or - KTH a b k : ask for the k-th node on the path from node a to node b
Example:
N = 6
1 2 1 // edge connects node 1 and node 2 has cost 1
2 4 1
2 5 2
1 3 1
3 6 2
Path from node 4 to node 6 is 4 -> 2 -> 1 -> 3 -> 6
DIST 4 6 : answer is 5 (1 + 1 + 1 + 2 = 5)
KTH 4 6 4 : answer is 3 (the 4-th node on the path from node 4 to node 6 is 3)
Input
The first line of input contains an integer t, the number of test cases (t <= 25). t test cases follow.
For each test case:
- In the first line there is an integer N (N <= 10000)
- In the next N-1 lines, the i-th line describes the i-th edge: a line with three integers a b c denotes an edge between a, b of cost c (c <= 100000)
- The next lines contain instructions "DIST a b" or "KTH a b k"
- The end of each test case is signified by the string "DONE".
There is one blank line between successive tests.
Output
For each "DIST" or "KTH" operation, write one integer representing its result.
Print one blank line after each test.
Example
Input:
1 6
1 2 1
2 4 1
2 5 2
1 3 1
3 6 2
DIST 4 6
KTH 4 6 4
DONE Output:
5
3
Hint
| Added by: | Thanh-Vy Hua |
| Date: | 2006-08-27 |
| Time limit: | 0.433s |
| Source limit: | 15000B |
| Memory limit: | 1536MB |
| Cluster: | Cube (Intel G860) |
| Languages: | All except: ERL JS NODEJS PERL 6 VB.net |
| Resource: | Special thanks to Ivan Krasilnikov for his alternative solution |
有两种操作,一是求两点间距离,二是求一点到另一点路径上的第k个点。
LCA妥妥的。
/*by SilverN*/
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<vector>
using namespace std;
const int mxn=;
int read(){
int x=,f=;char ch=getchar();
while(ch<'' || ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>='' && ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
struct edge{
int v,nxt,dis;
}e[mxn<<];
int hd[mxn],mct=;
void add_edge(int u,int v,int d){
e[++mct].v=v;e[mct].nxt=hd[u];e[mct].dis=d;hd[u]=mct;return;
}
int T,n;
int fa[mxn][];
int dep[mxn];
int dis[mxn];
void init(){memset(hd,,sizeof hd);memset(fa,,sizeof fa);mct=;}
void DFS(int u,int f){
dep[u]=dep[f]+;
for(int i=;i<;i++)fa[u][i]=fa[fa[u][i-]][i-];
for(int i=hd[u];i;i=e[i].nxt){
int v=e[i].v;
if(v==f)continue;
fa[v][]=u;
dis[v]=dis[u]+e[i].dis;
DFS(v,u);
}
return;
}
int LCA(int x,int y){
if(dep[x]<dep[y])swap(x,y);
for(int i=;i>=;i--)
if(dep[fa[x][i]]>=dep[y])x=fa[x][i];
if(x==y)return y;
for(int i=;i>=;i--){
if(fa[x][i]!=fa[y][i])x=fa[x][i],y=fa[y][i];
}
return fa[x][];
}
inline int dist(int x,int y){//求距离
int tmp=LCA(x,y);
return dis[x]+dis[y]-dis[tmp]*;
}
inline int find(int x,int k){//上溯
for(int i=;i>=;i--){
if(k&(<<i))x=fa[x][i];
}
return x;
}
inline int solve(int x,int y,int k){//查询从x到y路径上第k个结点
int tmp=LCA(x,y);
int mid=dep[x]-dep[tmp]+;
if(k==mid)return tmp;
if(k>mid){
int dd=dep[y]-dep[tmp]+;
mid=k-mid+;
k=dd-mid;
return find(y,k);
}
else
return find(x,k-);
}
int main(){
T=read();
int i,j,x,y,d;
while(T--){
init();
n=read();
for(i=;i<n;i++){
x=read();y=read();d=read();
add_edge(x,y,d);
add_edge(y,x,d);
}
int rt=n/+;
dis[rt]=;
DFS(rt,);
char op[];
while(scanf("%s",op) && (op[]!='D' || op[]!='O')){
if(op[]=='K'){
x=read();y=read();d=read();
printf("%d\n",solve(x,y,d));
}
if(op[]=='D'){
x=read();y=read();
printf("%d\n",dist(x,y));
}
}
}
return ;
}
SPOJ913 Query on a tree II的更多相关文章
- LCA SP913 QTREE2 - Query on a tree II
SP913 QTREE2 - Query on a tree II 给定一棵n个点的树,边具有边权.要求作以下操作: DIST a b 询问点a至点b路径上的边权之和 KTH a b k 询问点a至点 ...
- spoj 913 Query on a tree II (倍增lca)
Query on a tree II You are given a tree (an undirected acyclic connected graph) with N nodes, and ed ...
- [SPOJ913]QTREE2 - Query on a tree II【倍增LCA】
题目描述 [传送门] 题目大意 给一棵树,有两种操作: 求(u,v)路径的距离. 求以u为起点,v为终点的第k的节点. 分析 比较简单的倍增LCA模板题. 首先对于第一问,我们只需要预处理出根节点到各 ...
- 【SPOJ QTREE2】QTREE2 - Query on a tree II(LCA)
You are given a tree (an undirected acyclic connected graph) with N nodes, and edges numbered 1, 2, ...
- Query on a tree II 倍增LCA
You are given a tree (an undirected acyclic connected graph) with N nodes, and edges numbered 1, 2, ...
- LCA【SP913】Qtree - Query on a tree II
Description 给定一棵n个点的树,边具有边权.要求作以下操作: DIST a b 询问点a至点b路径上的边权之和 KTH a b k 询问点a至点b有向路径上的第k个点的编号 有多组测试数据 ...
- SPOJ Query on a tree II (树剖||倍增LCA)(占位)
You are given a tree (an undirected acyclic connected graph) with N nodes, and edges numbered 1, 2, ...
- SPOJ 913 Query on a tree II
spoj题面 Time limit 433 ms //spoj的时限都那么奇怪 Memory limit 1572864 kB //1.5个G,疯了 Code length Limit 15000 B ...
- QTREE2 spoj 913. Query on a tree II 经典的倍增思想
QTREE2 经典的倍增思想 题目: 给出一棵树,求: 1.两点之间距离. 2.从节点x到节点y最短路径上第k个节点的编号. 分析: 第一问的话,随便以一个节点为根,求得其他节点到根的距离,然后对于每 ...
随机推荐
- VMware Fusion 中如何复制centos/linux虚拟机
今天想在mac本上,弄几个centos的虚拟机,尝试搭建hadoop的全分布环境.一台台虚拟机安装过去太麻烦了,想直接将现有的centos虚拟机复制几份完事,但是复制出来的虚拟机无法上网,折腾了一翻, ...
- npm中package.json详解
通常我们使用npm init命令来创建一个npm程序时,会自动生成一个package.json文件.package.json文件会描述这个NPM包的所有相关信息,包括作者.简介.包依赖.构建等信息,格 ...
- Webwork 学习之路【05】请求跳转前 xwork.xml 的读取
个人理解 WebWork 与 Struts2 都是将xml配置文件作为 Controler 跳转的基本依据,WebWork 跳转 Action 前 xml 文件的读取依赖 xwork-1.0.jar, ...
- 完整的社交app源码android+laravel
等想到写点什么的时候再写吧,其他看代码. https://github.com/huijimuhe/monolog-android https://github.com/huijimuhe/monol ...
- Nodejs进阶:如何将图片转成datauri嵌入到网页中去
问题:将图片转成datauri 今天,在QQ群有个群友问了个问题:"nodejs读取图片,转成base64,怎么读取呢?" 想了一下,他想问的应该是 怎么样把图片嵌入到网页中去,即 ...
- .Net分布式异常报警系统-客户端及服务端API
客户端 客户端的作用就是捕获未处理异常, 发送异常到服务端. 关于捕获未处理异常的方法参考 http://www.cnblogs.com/youring2/archive/2012/04/25/246 ...
- Bootstrap系列 -- 7. 列表排版方式
一. 去点列表 1. 使用class=list-unstyled <ul > <li>无序列表项目</li> <li>无序列表项目</li> ...
- ArcEngine将线符号化为立方体状
对于二三维同步中的三维视图肯定是需要通过二维元素来符号化成三维元素的,之前项目测试临时采用这个自代的圆管状: esriSimple3DLineStyle AxisStyle = esriSimple3 ...
- SQLite剖析之功能特性
SQLite是遵守ACID的轻型数据库引擎,它包含在一个相对较小的C库中.它是D.RichardHipp创建的公有领域项目.不像常见的客户端/服务器结构范例,SQLite引擎不是一个与程序通信的独立进 ...
- 禁用Win10显卡更新
右键This PC-Properties-Advanced system settings-选择Hardware这个tab-Device installation settings选择No