【转载请注明出处】http://www.cnblogs.com/mashiqi

Today let's talk about a intuitive explanation of Benjamini-Hochberg Procedure. My teacher Can told me this explanation.

Suppose there are $M$ hypothesis:$$H_1,H_2,\cdots,H_M$$and corresponding $M$ p-values:$$p_1,p_2,\cdots,p_M$$Let's suppose $p_i$ are in ascending order: $p_1 \leq p_2 \leq \cdots \leq p_M$ for convenience. Now we want to let the FDR to be a positive scale, say $\alpha$, then what is the threshold value $p$ that can be used to reject hypotheses.

We know that the Benjamini-Hochberg Procedure is like this: let $k$ be the largest i for which $p_i \leq \frac{i}{M} \alpha$, then reject all $H_i,~i=1,2,\cdots,k$.

We wants to ask why this above gives the FDR at $\alpha$? Let's consider a probability $p$, the threshold value. If we reject all $H_i$ thich satisfy corresponding $p_i \leq p$, then the FDR is at $\alpha$. But how do we get the value of $p$? Let's take a look at the exact definition of False Discovery Rate:$$FDR = E[\frac{ \sharp\{falsely~say~significant\} }{\sharp\{say~significant\}}]$$
The $$\sharp\{say~significant\} = \sharp\{p_i \leq p\}$$. If the $H_i$ is null, then $p_i$ will be uniformly distributed,so $$\sharp\{falsely~say~significant\} = \pi_0 \times p \times M$$, where $\pi_0$ is the non-hypothesis probability. Then we get$$\frac{\pi_0 \times p \times M}{\sharp\{p_i \leq p\}}=\alpha$$

This gives a explanation.

False Discovery Rate, a intuitive explanation的更多相关文章

  1. 文献名:Repeat-Preserving Decoy Database for False Discovery Rate Estimation in Peptide Identication (用于肽段鉴定中错误发生率估计的能体现重复性的诱饵数据库)

    文献名:Repeat-Preserving Decoy Database for False Discovery Rate Estimation in Peptide Identication (用于 ...

  2. [转]An Intuitive Explanation of Convolutional Neural Networks

    An Intuitive Explanation of Convolutional Neural Networks https://ujjwalkarn.me/2016/08/11/intuitive ...

  3. What is an intuitive explanation of the relation between PCA and SVD?

    What is an intuitive explanation of the relation between PCA and SVD? 36 FOLLOWERS Last asked: 30 Se ...

  4. An Intuitive Explanation of Fourier Theory

    Reprinted from: http://cns-alumni.bu.edu/~slehar/fourier/fourier.html An Intuitive Explanation of Fo ...

  5. An Intuitive Explanation of Convolutional Neural Networks

    https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/ An Intuitive Explanation of Convolu ...

  6. 一目了然卷积神经网络 - An Intuitive Explanation of Convolutional Neural Networks

    An Intuitive Explanation of Convolutional Neural Networks 原文地址:https://ujjwalkarn.me/2016/08/11/intu ...

  7. MCP|MZL|Accurate Estimation of Context- Dependent False Discovery Rates in Top- Down Proteomics 在自顶向下蛋白组学中精确设定评估条件估计假阳性

    一. 概述: 自顶向下的蛋白质组学技术近年来也发展成为高通量蛋白定性定量手段.该技术可以在一次的实验中定性上千种蛋白,然而缺乏一个可靠的假阳性控制方法阻碍了该技术的发展.在大规模流程化的假阳性控制手段 ...

  8. ROC 曲线/准确率、覆盖率(召回)、命中率、Specificity(负例的覆盖率)

      欢迎关注博主主页,学习python视频资源 sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频教程) https://study.163.com/course/introduction.ht ...

  9. MAGENTA: Meta-Analysis Gene-set Enrichment of variaNT Associations

    MAGENTA是一款计算工具,利用全基因组遗传数据,计算预先设定的涉及生物过程或者功能性基因集在遗传相关性的富集程度.开发的目的是分析基因型不是现成的数据集,比如大型的全基因组关联荟萃分析.在以下两种 ...

随机推荐

  1. set集合,是一个无序且不重复的元素集合

    set集合,是一个无序且不重复的元素集合 class set(object):     """     set() -> new empty set object ...

  2. DataGridView单元格美化

          #region 重绘Column.Row           int _RowHeadWidth = 41;         ///            /// 重绘Column.Row ...

  3. Java类实例化时候的加载顺序

    面试试题中经常考到此问题,现在做进一步的总结: public class Student { public Student(String name){ System.out.println(name) ...

  4. JavaWeb学习总结_Servlet开发

    一. Servlet简介 二.Servlet的运行过程 Servlet程序是由Web服务器调用,web服务器收到客户端的Servlet访问请求后: WEB服务器首先检查是否已经装载并创建了该Servl ...

  5. 《BI那点儿事》数据流转换——查找转换

    查找转换通过联接输入列中的数据和引用数据集中的列来执行查找.是完全匹配查找.在源表中查找与字表能关联的所有源表记录.准备数据.源表 T_QualMoisture_Middle_Detail字典表 T_ ...

  6. MySQL数据库优化的八种方式(经典必看)

      引言: 关于数据库优化,网上有不少资料和方法,但是不少质量参差不齐,有些总结的不够到位,内容冗杂 偶尔发现了这篇文章,总结得很经典,文章流量也很大,所以拿到自己的总结文集中,积累优质文章,提升个人 ...

  7. nginx+tomcat 配置负载均衡

    nginx 从Nginx官网下载页面(http://nginx.org/en/download.html)下载Nginx最新版本(我用的是nginx-1.8.1版本) 安装就直接把压缩包解压到一个路径 ...

  8. Android 控件知识点,

    一.Android控件具有visibility属性,可以取三个值:visible(默认值)可见,invisible(不可见,但仍然占据原有的位置和大小,可以看做是变得透明了),gone(空间不仅不可见 ...

  9. 再说最后一次!关于不再更新SkySRS的理由!

    再说最后一次!关于不再更新SkySRS的理由! https://www.itiankong.net/thread-195937-1-1.html Skyfree 发表于 2012-5-1 14:53: ...

  10. Innodb引擎 compact模式下元组的磁盘存储结构

    可变字符串长度:可变字符串长度: null vector 元组头(5个字节) 主键 trx id (6个字节) rollback pointer( 7个字节 ) 可变字符串 可变字符串   有了这个后 ...