【转载请注明出处】http://www.cnblogs.com/mashiqi

Today let's talk about a intuitive explanation of Benjamini-Hochberg Procedure. My teacher Can told me this explanation.

Suppose there are $M$ hypothesis:$$H_1,H_2,\cdots,H_M$$and corresponding $M$ p-values:$$p_1,p_2,\cdots,p_M$$Let's suppose $p_i$ are in ascending order: $p_1 \leq p_2 \leq \cdots \leq p_M$ for convenience. Now we want to let the FDR to be a positive scale, say $\alpha$, then what is the threshold value $p$ that can be used to reject hypotheses.

We know that the Benjamini-Hochberg Procedure is like this: let $k$ be the largest i for which $p_i \leq \frac{i}{M} \alpha$, then reject all $H_i,~i=1,2,\cdots,k$.

We wants to ask why this above gives the FDR at $\alpha$? Let's consider a probability $p$, the threshold value. If we reject all $H_i$ thich satisfy corresponding $p_i \leq p$, then the FDR is at $\alpha$. But how do we get the value of $p$? Let's take a look at the exact definition of False Discovery Rate:$$FDR = E[\frac{ \sharp\{falsely~say~significant\} }{\sharp\{say~significant\}}]$$
The $$\sharp\{say~significant\} = \sharp\{p_i \leq p\}$$. If the $H_i$ is null, then $p_i$ will be uniformly distributed,so $$\sharp\{falsely~say~significant\} = \pi_0 \times p \times M$$, where $\pi_0$ is the non-hypothesis probability. Then we get$$\frac{\pi_0 \times p \times M}{\sharp\{p_i \leq p\}}=\alpha$$

This gives a explanation.

False Discovery Rate, a intuitive explanation的更多相关文章

  1. 文献名:Repeat-Preserving Decoy Database for False Discovery Rate Estimation in Peptide Identication (用于肽段鉴定中错误发生率估计的能体现重复性的诱饵数据库)

    文献名:Repeat-Preserving Decoy Database for False Discovery Rate Estimation in Peptide Identication (用于 ...

  2. [转]An Intuitive Explanation of Convolutional Neural Networks

    An Intuitive Explanation of Convolutional Neural Networks https://ujjwalkarn.me/2016/08/11/intuitive ...

  3. What is an intuitive explanation of the relation between PCA and SVD?

    What is an intuitive explanation of the relation between PCA and SVD? 36 FOLLOWERS Last asked: 30 Se ...

  4. An Intuitive Explanation of Fourier Theory

    Reprinted from: http://cns-alumni.bu.edu/~slehar/fourier/fourier.html An Intuitive Explanation of Fo ...

  5. An Intuitive Explanation of Convolutional Neural Networks

    https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/ An Intuitive Explanation of Convolu ...

  6. 一目了然卷积神经网络 - An Intuitive Explanation of Convolutional Neural Networks

    An Intuitive Explanation of Convolutional Neural Networks 原文地址:https://ujjwalkarn.me/2016/08/11/intu ...

  7. MCP|MZL|Accurate Estimation of Context- Dependent False Discovery Rates in Top- Down Proteomics 在自顶向下蛋白组学中精确设定评估条件估计假阳性

    一. 概述: 自顶向下的蛋白质组学技术近年来也发展成为高通量蛋白定性定量手段.该技术可以在一次的实验中定性上千种蛋白,然而缺乏一个可靠的假阳性控制方法阻碍了该技术的发展.在大规模流程化的假阳性控制手段 ...

  8. ROC 曲线/准确率、覆盖率(召回)、命中率、Specificity(负例的覆盖率)

      欢迎关注博主主页,学习python视频资源 sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频教程) https://study.163.com/course/introduction.ht ...

  9. MAGENTA: Meta-Analysis Gene-set Enrichment of variaNT Associations

    MAGENTA是一款计算工具,利用全基因组遗传数据,计算预先设定的涉及生物过程或者功能性基因集在遗传相关性的富集程度.开发的目的是分析基因型不是现成的数据集,比如大型的全基因组关联荟萃分析.在以下两种 ...

随机推荐

  1. 【UML】如何记忆UML类图的画法

    前言 UML类图形象反映系统类之间的关系,大家非常常用.小弟不才,偶尔使用,往往每次使用都得查询各种关系的表示方式.终于,这次认真看了几遍,打算记起来. 注意 记忆方法只是本人联想,用于加强记忆.与该 ...

  2. 1. Swift基本变量|运算符|控制流

    Swift基于cocoa Touch框架,苹果官方为了保证Swift的可靠性,结合多种语言的特性,同时独立了一套属于自己的单独语言,结合了C,C++,OC,Java等语言. 基本变量: 1 . swi ...

  3. Ubuntu 14.04下安装功能强大的屏幕截图软件 Shutter

    [注释]试用了一下,果然很强大,牛逼 一款功能强大的屏幕截图软件——Shutter,Shutter最基本的就是截图功能了,在设计上可以自由选定区域,同时选定之 后依然可以通过上下左右四个地方来改变选区 ...

  4. IE6兼容性问题及IE6常见bug详细汇总

    转载地址:http://www.jb51.net/css/76894.html 1.IE6怪异解析之padding与border算入宽高 原因:未加文档声明造成非盒模型解析 解决方法:加入文档声明&l ...

  5. 《BI那点儿事》数据流转换——审核

    审核转换允许对数据流添加审核审核数据,以往使用HIPPA和Sarbanes-Oxley (SOX)时,必须跟踪谁在什么时插入数据,审核转换可以实现这种功能.例如要跟踪那一个task向表里插入数据,可以 ...

  6. JSPServlet精华笔记

    一.     JSP (Java Server Pages) JSP是指: ▶    在HTML中嵌入Java脚本代码 ▶    由应用服务器中的JSP引擎来编译和执行嵌入的Java脚本代码 ▶    ...

  7. 【转】linux命令详解:md5sum命令

    [转]linux命令详解:md5sum命令 转自:http://blog.itpub.net/29320885/viewspace-1710218/ 前言 在网络传输.设备之间转存.复制大文件等时,可 ...

  8. PHP 小方法之 计算两个时间戳之间相差的日时分秒

    if(! function_exists ('timediff') ) { function timediff($begin_time,$end_time){ if($begin_time < ...

  9. 鼠标滑过弹出jquery在线客服

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  10. vue学习笔记之属性和方法

    每个Vue都会代理其data对象里所有的属性:只有这些被代理的属性是响应的.如果在实例创建之后添加新的属性到实例上,它不会触发视图更新.例子: <script type="text/j ...