poj 2528
| Time Limit: 1000MS | Memory Limit: 65536K | |
| Total Submissions: 56958 | Accepted: 16464 |
Description
- Every candidate can place exactly one poster on the wall.
- All posters are of the same height equal to the height of the wall; the width of a poster can be any integer number of bytes (byte is the unit of length in Bytetown).
- The wall is divided into segments and the width of each segment is one byte.
- Each poster must completely cover a contiguous number of wall segments.
They have built a wall 10000000 bytes long (such that there is enough place for all candidates). When the electoral campaign was restarted, the candidates were placing their posters on the wall and their posters differed widely in width. Moreover, the candidates
started placing their posters on wall segments already occupied by other posters. Everyone in Bytetown was curious whose posters will be visible (entirely or in part) on the last day before elections.
Your task is to find the number of visible posters when all the posters are placed given the information about posters' size, their place and order of placement on the electoral wall.
Input
were placed. The i-th line among the n lines contains two integer numbers li and ri which are the number of the wall segment occupied by the left end and the right end of the i-th poster, respectively. We know
that for each 1 <= i <= n, 1 <= li <= ri <= 10000000. After the i-th poster is placed, it entirely covers all wall segments numbered li, li+1
,... , ri.
Output
The picture below illustrates the case of the sample input.

Sample Input
1
5
1 4
2 6
8 10
3 4
7 10
Sample Output
4
Source
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
struct li{int x,y;}a[10001];
int n,ans,col[44001],tot[10001],s1[22001],s2[33001],n1,n2;
int bin(int k)
{
int l=1,r=n2;
while(l<=r){
int m=(l+r)>>1;
if(s2[m]==k) return m;
if(s2[m]<k) l=m+1;
else r=m-1;
}
return -1;
}
void pushdown(int k)
{
if(col[k]!=-1){
col[k<<1]=col[k<<1|1]=col[k];
col[k]=-1;
}
}
void update(int s,int t,int k,int wantl,int wantr,int p)
{
if(wantl<=s&&t<=wantr){
col[k]=p;
return ;
}pushdown(k);
int m=(s+t)>>1;
if(wantl<=m)update(s,m,k<<1,wantl,wantr,p);
if(wantr>m)update(m+1,t,k<<1|1,wantl,wantr,p);
}
void query(int s,int t,int k)
{
if(col[k]!=-1){
if(!tot[col[k]])ans++;
tot[col[k]]=1;
return ;
}
if(!(s^t))return ;
int m=(s+t)>>1;
query(s,m,k<<1);
query(m+1,t,k<<1|1);
}
int main()
{
int t;
scanf("%d",&t);
for(;t;t--){
scanf("%d",&n);
n1=0;
for(int i=1;i<=n;i++){
scanf("%d%d",&a[i].x,&a[i].y);
s1[++n1]=a[i].x;
s1[++n1]=a[i].y;
}
sort(s1+1,s1+1+n1);
n2=0;
for(int i=1;i<=n1;i++)
if(s1[i-1]^s1[i])s2[++n2]=s1[i];
//for(int i=n2;i>=1;i--)
// if(s2[i]^(s2[i-1]+1))s2[++n2]=s2[i-1]+1;
//sort(s2+1,s2+1+n2);
memset(col,-1,sizeof(col));
for(int i=1;i<=n;i++){
a[i].x=bin(a[i].x);
a[i].y=bin(a[i].y);
update(1,n2,1,a[i].x,a[i].y,i);
}ans=0;
memset(tot,0,sizeof(tot));
query(1,n2,1);
printf("%d\n",ans);
}
return 0;
}
poj 2528的更多相关文章
- POJ 2528 Mayor's posters
Mayor's posters Time Limit:1000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I64u Sub ...
- poj 2528 Mayor's posters(线段树+离散化)
/* poj 2528 Mayor's posters 线段树 + 离散化 离散化的理解: 给你一系列的正整数, 例如 1, 4 , 100, 1000000000, 如果利用线段树求解的话,很明显 ...
- POJ 2528 Mayor's posters(线段树区间染色+离散化或倒序更新)
Mayor's posters Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 59239 Accepted: 17157 ...
- poj 2528 Mayor's posters 线段树+离散化技巧
poj 2528 Mayor's posters 题目链接: http://poj.org/problem?id=2528 思路: 线段树+离散化技巧(这里的离散化需要注意一下啊,题目数据弱看不出来) ...
- poj 2528 (线段树+离散化)
poj 2528 For each input data set print the number of visible posters after all the posters are place ...
- POJ - 2528 Mayor's posters(dfs+分治)
POJ - 2528 Mayor's posters 思路:分治思想. 代码: #include<iostream> #include<cstdio> #include< ...
- POJ.2528 Mayor's posters (线段树 区间更新 区间查询 离散化)
POJ.2528 Mayor's posters (线段树 区间更新 区间查询 离散化) 题意分析 贴海报,新的海报能覆盖在旧的海报上面,最后贴完了,求问能看见几张海报. 最多有10000张海报,海报 ...
- POJ 2528——Mayor's posters——————【线段树区间替换、找存在的不同区间】
Mayor's posters Time Limit:1000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I64u Sub ...
- poj 2528 线段树区间修改+离散化
Mayor's posters POJ 2528 传送门 线段树区间修改加离散化 #include <cstdio> #include <iostream> #include ...
- POJ 2528 Mayor's posters (线段树)
题目链接:http://poj.org/problem?id=2528 题目大意:有一个很上的面板, 往上面贴海报, 问最后最多有多少个海报没有被完全覆盖 解题思路:将贴海报倒着想, 对于每一张海报只 ...
随机推荐
- CXF:通过WebService上传文件,包括大文件的处理
参考网上文章,用CXF发布上传文件接口,并上传大文件的测试. 框架:spring3.1+cxf2.7.6 1.定义文件类实体 import javax.activation.DataHandler; ...
- iOS使用Charles(青花瓷)抓包并篡改返回数据图文详解
写本文的契机主要是前段时间有次用青花瓷抓包有一步忘了,在网上查了半天也没找到写的完整的教程,于是待问题解决后抽时间截了图,自己写一遍封存在博客园中以便以后随时查阅. charles又名青花瓷,在iOS ...
- 改变Android ProgressBar样式颜色
地址: http://blog.csdn.net/lvxiangan/article/details/9110121
- iOS 全局断点崩溃
设置全局断点出现奔溃,可以点击继续运行不影响程序,不是程序的问题,webview和自定义xib View使用的时候
- Xcode安装插件,错误选择了Skip Bundles,重新出现Load Bundles方法
Xcode安装插件经常会遇到这样的问题,出现提示性选择,还是英文提示,所以没仔细看就习惯性的选择了右侧的按钮 点击了Skip Bundle,结果悲剧的发现,发现插件完全失效了,以后不管怎么打开Xcod ...
- forward内部跳转 和redirect重定向跳转的区别
1.从地址栏显示来说 forward是服务器请求资源,服务器直接访问目标地址的URL,把那个URL的响应内容读取过来,然后把这些内容再发给浏览器.浏览器根本不知道服务器发送的内容从哪里来的,所以它的地 ...
- iOS 简单动画 序列帧动画
- (void)touchesBegan:(NSSet<UITouch *> *)touches withEvent:(UIEvent *)event{ NSLog(@"旭宝爱吃 ...
- CocoaPods的安装和使用那些事(Xcode 7.2,iOS 9.2,Swift)
Using The CocoaPods to Manage The Third Party Open-source Libaries 介绍 CocoaPods是用来管理你的Xcode项目的依赖库的.使 ...
- php多文件上传数组 转换
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"><html><meta ...
- .Net开源网络爬虫Abot介绍
.Net中也有很多很多开源的爬虫工具,abot就是其中之一.Abot是一个开源的.net爬虫,速度快,易于使用和扩展.项目的地址是https://code.google.com/p/abot/ 对于爬 ...