In this post I’m going to help you understand how Kafka stores its data.

I’ve found understanding this useful when tuning Kafka’s performance and for context on what each broker configuration actually does. I was inspired by Kafka’s simplicity and used what I learned to start implementing Kafka in Golang.

So how does Kafka’s storage internals work?

Kafka’s storage unit is a partition

A partition is an ordered, immutable sequence of messages that are appended to. A partition cannot be split across multiple brokers or even multiple disks.

 

The retention policy governs how Kafka retains messages

You specify how much data or how long data should be retained, after which Kafka purges messages in-order—regardless of whether the message has been consumed.

Partitions are split into segments

So Kafka needs to regularly find the messages on disk that need purged. With a single very long file of a partition’s messages, this operation is slow and error prone. To fix that (and other problems we’ll see), the partition is split into segments.

When Kafka writes to a partition, it writes to a segment — the active segment. If the segment’s size limit is reached, a new segment is opened and that becomes the new active segment.

Segments are named by their base offset. The base offset of a segment is an offset greater than offsets in previous segments and less than or equal to offsets in that segment.

 

On disk a partition is a directory and each segment is an index file and a log file.

$ tree kafka | head -n 6
kafka
├── events-1
│ ├── 00000000003064504069.index
│ ├── 00000000003064504069.log
│ ├── 00000000003065011416.index
│ ├── 00000000003065011416.log

Segments logs are where messages are stored

Each message is its value, offset, timestamp, key, message size, compression codec, checksum, and version of the message format.

The data format on disk is exactly the same as what the broker receives from the producer over the network and sends to its consumers. This allows Kafka to efficiently transfer data with zero copy.

$ bin/kafka-run-class.sh kafka.tools.DumpLogSegments --deep-iteration --print-data-log --files /data/kafka/events-1/00000000003065011416.log | head -n 4
Dumping /data/kafka/appusers-1/00000000003065011416.log
Starting offset: 3065011416
offset: 3065011416 position: 0 isvalid: true payloadsize: 2820 magic: 1 compresscodec: NoCompressionCodec crc: 811055132 payload: {"name": "Travis", msg: "Hey, what's up?"}
offset: 3065011417 position: 1779 isvalid: true payloadsize: 2244 magic: 1 compresscodec: NoCompressionCodec crc: 151590202 payload: {"name": "Wale", msg: "Starving."}

Segment indexes map message offsets to their position in the log

The segment index maps offsets to their message’s position in the segment log.

 

The index file is memory mapped, and the offset look up uses binary search to find the nearest offset less than or equal to the target offset.

The index file is made up of 8 byte entries, 4 bytes to store the offset relative to the base offset and 4 bytes to store the position. The offset is relative to the base offset so that only 4 bytes is needed to store the offset. For example: let’s say the base offset is 10000000000000000000, rather than having to store subsequent offsets 10000000000000000001 and 10000000000000000002 they are just 1 and 2.

Kafka wraps compressed messages together

Producers sending compressed messages will compress the batch together and send it as the payload of a wrapped message. And as before, the data on disk is exactly the same as what the broker receives from the producer over the network and sends to its consumers.

 

Let’s Review

Now you know how Kafka storage internals work:

  • Partitions are Kafka’s storage unit
  • Partitions are split into segments
  • Segments are two files: its log and index
  • Indexes map each offset to their message’s position in the log, they’re used to look up messages
  • Indexes store offsets relative to its segment’s base offset
  • Compressed message batches are wrapped together as the payload of a wrapper message
  • The data stored on disk is the same as what the broker receives from the producer over the network and sends to its consumers

Implementing Kafka in Golang

I’m writing an implementation of Kafka in Golang, Jocko. So far I’ve implemented reading and writing to segments on a single broker and am working on making it distributed. Follow along and give me a hand.

How Kafka’s Storage Internals Work的更多相关文章

  1. Error when sending message to topic test with key: null, value: 2 bytes with error: (org.apache.kafka.clients.producer.internals.ErrorLoggingCallback)

    windows下使用kafka遇到这个问题: Error when sending message to topic test with key: null, value: 2 bytes with ...

  2. Kafka遇到30042ms has passed since batch creation plus linger time at org.apache.kafka.clients.producer.internals.FutureRecordMetadata.valueOrError(FutureRecordMetadata.java:94)

    问题描述: 运行生产者线程的时候显示如下错误信息: Expiring 1 record(s) for XXX-0: 30042 ms has passed since batch creation p ...

  3. Kafka Offset Storage

    1.概述 目前,Kafka 官网最新版[0.10.1.1],已默认将消费的 offset 迁入到了 Kafka 一个名为 __consumer_offsets 的Topic中.其实,早在 0.8.2. ...

  4. 《Pro SQL Server Internals, 2nd edition》的CHAPTER 1 Data Storage Internals中的Data Pages and Data Rows(翻译)

    数据页和数据行 数据库中的空间被划分为逻辑8KB的页面.这些页面是以0开始的连续编号,并且可以通过指定文件ID和页号来引用它们.页面编号都是连续的,这样当SQL Server增长数据库文件时,从文件中 ...

  5. Kafka Internals: Consumers

    Check out my last article, Kafka Internals: Topics and Partitions to learn about Kafka storage inter ...

  6. kafka学习指南(总结版)

    版本介绍 从使用上来看,以0.9为分界线,0.9开始不再区分高级/低级消费者API. 从兼容性上来看,以0.8.x为分界线,0.8.x不兼容以前的版本. 总体拓扑架构 从上可知: 1.生产者不需要访问 ...

  7. Kafka官方文档V2.7

    1.开始 1.1 简介 什么是事件流? 事件流相当于人体的中枢神经系统的数字化.它是 "永远在线 "世界的技术基础,在这个世界里,业务越来越多地被软件定义和自动化,软件的用户更是软 ...

  8. Kafka 消费者解析

    一.消费者相关概念 1.1 消费组&消费者 消费者: 消费者从订阅的主题消费消息,消费消息的偏移量保存在Kafka的名字是__consumer_offsets的主题中 消费者还可以将⾃⼰的偏移 ...

  9. Kafka 0.9+Zookeeper3.4.6集群搭建、配置,新Client API的使用要点,高可用性测试,以及各种坑 (转载)

    Kafka 0.9版本对java client的api做出了较大调整,本文主要总结了Kafka 0.9在集群搭建.高可用性.新API方面的相关过程和细节,以及本人在安装调试过程中踩出的各种坑. 关于K ...

随机推荐

  1. ios 汉字字符串数组拼音排序

    ios没有提供简单的汉字拼音排序方法,在网上看到了oc方法,这里写以下对应的swift方法 var stringCompareBlock: (String,String)->Bool = { ( ...

  2. ACM/ICPC 之 最短路径-dijkstra范例(ZOJ2750-POJ1135(ZOJ1298))

    最短路经典算法-dijkstra范例(两道),第一道是裸的dijkstra,第二道需要枚举所有边已找到可能的情况. ZOJ2750-Idiomatic Phrases Game 题意:见Code 题解 ...

  3. HDU 1823 Luck and Love(二维线段树)

    之前只知道这个东西的大概概念,没具体去写,最近呵呵,今补上. 二维线段树 -- 点更段查 #include <cstdio> #include <cstring> #inclu ...

  4. 【工具】 原版完美激活 Flash builder 4.7 【非破解激活】

    此方法原理在于激活 FlashBuilder 4.7 而不是破解(靠修改文件,或改变版本号),所以此破解更加稳定! FlashBuilder 4.7 下载地址: 32bit:http://trials ...

  5. 把图标改成web字体

    一.下载自己想要的矢量图标,然后在AI中打开二.在AI中将有瑕疵的图标修改一下,再分别另存为svg格式的图标三.打开IcoMoon Web app网页,然后点击左上角的+Import Icons添加你 ...

  6. CSS3实现圆角效果

    利用border-radius属性可以给元素div,input元素等添加圆角效果 后跟 值为这个圆角的半径,即数值越大效果越明显 -webkit-border-top/bottom-left/righ ...

  7. 【leetcode】Reverse Linked List(easy)

    Reverse a singly linked list. 思路:没啥好说的.秒... ListNode* reverseList(ListNode* head) { ListNode * rList ...

  8. 【Git】标签管理

    来源:廖雪峰 为什么要标签: 发布一个版本时,我们通常先在版本库中打一个标签(tag),这样,就唯一确定了打标签时刻的版本.将来无论什么时候,取某个标签的版本,就是把那个打标签的时刻的历史版本取出来. ...

  9. 6. ZigZag Conversion

    题目: The string "PAYPALISHIRING" is written in a zigzag pattern on a given number of rows l ...

  10. stm32——NFC芯片--PN532的使用

    stm32——NFC芯片--PN532的使用 一.NFC简介 NFC(Near Field Communication)近场通信,是一种短距高频的无线电技术,在13.56MHz频率运行于20厘米距离内 ...