题目链接: 传送门

Benefit

Time Limit: 5000MS     Memory Limit: 32768 KB

Description

Recently Yaghoub is playing a new trick to sell some more. When somebody gives him A Tomans, he
who never has appropriate changes, asks for B Tomans such that lowest common multiple of A and B
equals to C and he will pay back a round bill. Or otherwise take some snack instead of the remaining of
his money. He believes that finding such a number is hard enough that dissuades students from paying
that.
You should write a program that help poor students giving the appropriate amount of money to
Yaghoub. Of course if there are several answers you go for students’ benefit which is the lowest of them.

Input

The first line begin with an integer T (T ≤ 100000), the number of tests. Each test that comes in a separate line contains two integers A and C (1 ≤ A, C ≤ 107).

Output

Print the lowest integer B such that LCM(A, B) = C in a single line. If no such integer exists, print
‘NO SOLUTION’ instead. (Quotes for clarity)

Sample Input

3
2 6
32 1760
7 16

Sample Output

3
55
NO SOLUTION

解题思路:

题目大意:给出A、C,为你A与哪个数的最小公倍数是C。
其实就是欧几里得的应用,若C不是A的整数倍,直接跳出,若是,看一下A,C/A的最大公因数是不是1,如果不是继续跑欧几里得。

#include<iostream>
#include<cstdio>
using namespace std;

int gcd(int a,int b)
{
    return b == 0?a:gcd(b,a%b);
}

int main()
{
    int T,A,B,C;
    scanf("%d",&T);
    while (T--)
    {
        scanf("%d%d",&A,&C);
        if (C % A == 0)
        {
            B = C/A;
            int tmp = gcd(A,B);
            if (tmp == 1)
            {
                printf("%d\n",C/A);
            }
            else
            {
                int res = 1;
                while (tmp != 1)
                {
                    res *= tmp;
                    A = A / tmp;  //如果改用B = B/tmp去做的话。。一直超时,不知道是数据的原因还是什么。没搞懂
                    tmp = gcd(A,B);
                }
                printf("%d\n",res*B);
            }
        }
        else
        {
            printf("NO SOLUTION\n");
        }
    }
    return 0;
}

UVa 11889 Benefit(数论)的更多相关文章

  1. UVA 11889 - Benefit 可直接枚举

    看题传送门 题目大意: 输入两个整数A和C,求最小的整数B,使得lcm(A,B)=C.如果无解,输出NO SOLUTION 思路: A*B=C*gcd(A,B) 所以 B / gcd(A,B) = C ...

  2. UVA 11889 Benefit

    题意: lcm(a, b) = c; c是a,b的最小共倍数, 现在给出a, c, 要你求出最小的b. 解题思路:         1. 如果c%a != 0 表示无解. 设b = c/a; 当gcd ...

  3. Uva 11889 Benefit (lcm与gcd)

    题意:给你两个数,a,c,求出 lcm(a,b)==c 时的 b 的最小值 思路:我们知道一个性质 gcd(a,b)*lcm(a,b) = a*b 由此我们可以得到 b = gcd(a,b)*lcm( ...

  4. 数论 UVA 11889

    有关数论的题目,题目大意是给你两个数a和c,c为a和另一个数b的最小公倍数,要求你求出b的最小值.由最大公约数gcd(a,b)和最小公倍数lcm(a,b)之间的关系可知,lcm(a,b)*gcd(a, ...

  5. UVa 11889 (GCD) Benefit

    好吧,被大白书上的入门题给卡了.=_=|| 已知LCM(A, B) = C,已知A和C,求最小的B 一开始我想当然地以为B = C / A,后来发现这时候的B不一定满足gcd(A, B) = 1 A要 ...

  6. Benefit UVA - 11889(已知LCM和其中一个数,求另一个数)

    首先对于C不能整除A的状况肯定排除 然后得到B=C/A 然后取G=GCD(A,B) 如果G==1,那么此时B就是解 否则的话,就证明A,B,的最小公倍数肯定不是C,因为其最小公倍数是A*B/G 那么我 ...

  7. uva 10127 - Ones(数论)

    题目链接:uva 10127 - Ones 题目大意:给出n,问说者少要多少为1才干够整除n. 解题思路:等于是高精度取模,直到余数为0为止. #include <cstdio> #inc ...

  8. uva 1434 - YAPTCHA(数论)

    题目链接:uva 1434 - YAPTCHA 题目大意:给定n和k,求题目中给定的式子S(n). 解题思路:威尔逊定理,x为素数时有,((x−1)!+1)%x==0,所以对于本题.假设3*k+7为素 ...

  9. UVA 11645 - Bits(数论+计数问题)

    题目链接:11645 - Bits 题意:给定一个数字n.要求0-n的二进制形式下,连续11的个数. 思路:和 UVA 11038 这题相似,枚举中间,然后处理两边的情况. 只是本题最大的答案会超过l ...

随机推荐

  1. PRML读书会第十二章 Continuous Latent Variables(PCA,Principal Component Analysis,PPCA,核PCA,Autoencoder,非线性流形)

    主讲人 戴玮 (新浪微博: @戴玮_CASIA) Wilbur_中博(1954123) 20:00:49 我今天讲PRML的第十二章,连续隐变量.既然有连续隐变量,一定也有离散隐变量,那么离散隐变量是 ...

  2. 【分布式协调】之理解paxos

    感叹一下 不得不说近几年国内软件行业发生了巨大的变化,之前几乎所有应用都围绕桌面展开,而近几年很多让人神魂颠倒的关键词一个接一个的映入眼帘:web2.0.移动应用.云计算.大数据.互联网的浪潮一波接着 ...

  3. HTML5+JS 《五子飞》游戏实现(七)游戏试玩

    前面第一至第六章我们已经把<五子飞>游戏的基本工作都已经讲得差不多了,这一章主要是把所有的代码分享给大家,然后小伙伴们也可以玩一玩. 至于人机对战的我们放到后面讲进行分析. 试玩地址:ht ...

  4. matlab 画图中线型及颜色设置

    matlab受到控制界广泛接受的一个重要原因是因为它提供了方便的绘图 功能.本章主要介绍2维图形对象的生成函数及图形控制函数的使用方 法,还将 简单地介绍一些图形的修饰与标注函数及操作和控制MATLA ...

  5. Sublime Text 3 常用插件以及安装方法(vue 插件)

    使用Package Control组件安装 也可以安装package control组件,然后直接在线安装: 按Ctrl+` 调出console 粘贴以下代码到底部命令行并回车: { import u ...

  6. Map集合的应用及其遍历方式

    ---> HashMap :底层基于哈希表      存储原理也使用哈希表来存放的:            往HashMap添加了元素 ,首先会调用键的hashCode方法 获得一个哈希值,然后 ...

  7. [转]理解RESTful架构

    原文地址:http://www.ruanyifeng.com/blog/2011/09/restful 越来越多的人开始意识到,网站即软件,而且是一种新型的软件. 这种"互联网软件" ...

  8. [转]制作png格式透明图片的简易方法

    原文地址:http://blog.csdn.net/zhouyingge1104/article/details/24460743 photoshp之类的专业软件太复杂,其实,制作透明图标有比较简易的 ...

  9. 莫比乌斯函数筛法 & 莫比乌斯反演

    模板: int p[MAXN],pcnt=0,mu[MAXN]; bool notp[MAXN]; void shai(int n){ mu[1]=1; for(int i=2;i<=n;++i ...

  10. flex布局知识点

    flexBox 布局最合适小规模布局,而网格布局适合较大规模布局. float,clear,vertical-align  在flex中不起作用. flex布局中,有两类作用于父节点也子节点的样式,大 ...