• 【R】如何确定最适合数据集的机器学习算法

【R】如何确定最适合数据集的机器学习算法

抽查(Spot checking)机器学习算法是指如何找出最适合于给定数据集的算法模型。本文中我将介绍八个常用于抽查的机器学习算法,文中还包括各个算法的 R 语言代码,你可以将其保存并运用到下一个机器学习项目中。

适用于你的数据集的最佳算法

你无法在建模前就知道哪个算法最适用于你的数据集。你必须通过反复试验的方法来寻找出可以解决你的问题的最佳算法,我称这个过程为 spot checking。我们所遇到的问题不是我应该采用哪个算法来处理我的数据集?,而是我应该抽查哪些算法来处理我的数据集?

抽查哪些算法?

首先,你可以思考哪些算法可能适用于你的数据集。

其次,我建议尽可能地尝试混合算法并观察哪个方法最适用于你的数据集。

尝试混合算法(如事件模型和树模型)

尝试混合不同的学习算法(如处理相同类型数据的不同算法)

尝试混合不同类型的模型(如线性和非线性函数或者参数和非参数模型)

让我们具体看下如何实现这几个想法。下一章中我们将看到如何在 R 语言中实现相应的机器学习算法。

如何在 R 语言中抽查算法?

R 语言中存在数百种可用的机器学习算法。如果你的项目要求较高的预测精度且你有充足的时间,我建议你可以在实践过程中尽可能多地探索不同的算法。通常情况下,我们没有太多的时间用于测试,因此我们需要了解一些常用且重要的算法。

本章中你将会接触到一些 R 语言中经常用于抽查处理的线性和非线性算法,但是其中并不包括类似于boosting和bagging的集成算法。每个算法都会从两个视角进行呈现:

  1. 常规的训练和预测方法
  2. caret包的用法

你需要知道给定算法对应的软件包和函数,同时你还需了解如何利用caret包实现这些常用的算法,从而你可以利用caret包的预处理、算法评估和参数调优的能力高效地评估算法的精度。本文中将用到两个标准的数据集:

  1. 回归模型:BHD(Boston Housing Dataset)
  2. 分类模型: PIDD(Pima Indians Diabetes Dataset)

下文中的所有代码都是完整的,因此你可以将其保存下来并运用到下个机器学习项目中。

线性算法

这类方法对模型的函数形式有严格的假设条件,虽然这些方法的运算速度快,但是其结果偏倚较大。

这类模型的最终结果通常易于解读,因此如果线性模型的结果足够精确,那么你没有必要采用较为复杂的非线性模型。

线性回归模型

stat包中的lm()函数可以利用最小二乘估计拟合线性回归模型。

# load the library
library(mlbench)
# load data
data(BostonHousing)
# fit model
fit <- lm(mdev~>, BostonHousing)
# summarize the fit
print(fit)
# make predictions
predictions <- predict(fit, BostonHousing)
# summarize accuracy
mse <- mean((BostonHousing$medv - predictions)^2)
print(mse) # caret
# load libraries
library(caret)
library(mlbench)
# load dataset
data(BostonHousing)
# train
set.seed(7)
control <- trainControl(method="cv", number=5)
fit.lm <- train(medv~., data=BostonHousing, method="lm", metric="RMSE", preProc=c("center", "scale"), trControl=control)
# summarize fit
print(fit.lm)

罗吉斯回归模型

stat包中glm()函数可以用于拟合广义线性模型。它可以用于拟合处理二元分类问题的罗吉斯回归模型。

# load the library
library(mlbench)
# Load the dataset
data(PimaIndiansDiabetes)
# fit model
fit <- glm(diabetes~., data=PimaIndiansDiabetes, family=binomial(link='logit'))
# summarize the fit
print(fit)
# make predictions
probabilities <- predict(fit, PimaIndiansDiabetes[,1:8], type='response')
predictions <- ifelse(probabilities > 0.5,'pos','neg')
# summarize accuracy
table(predictions, PimaIndiansDiabetes$diabetes) # caret
# load libraries
library(caret)
library(mlbench)
# Load the dataset
data(PimaIndiansDiabetes)
# train
set.seed(7)
control <- trainControl(method="cv", number=5)
fit.glm <- train(diabetes~., data=PimaIndiansDiabetes, method="glm", metric="Accuracy", preProc=c("center", "scale"), trControl=control)
# summarize fit
print(fit.glm)

线性判别分析

MASS包中的lda()函数可以用于拟合线性判别分析模型。

# load the libraries
library(MASS)
library(mlbench)
# Load the dataset
data(PimaIndiansDiabetes)
# fit model
fit <- lda(diabetes~., data=PimaIndiansDiabetes)
# summarize the fit
print(fit)
# make predictions
predictions <- predict(fit, PimaIndiansDiabetes[,1:8])$class
# summarize accuracy
table(predictions, PimaIndiansDiabetes$diabetes) # caret
# load libraries
library(caret)
library(mlbench)
# Load the dataset
data(PimaIndiansDiabetes)
# train
set.seed(7)
control <- trainControl(method="cv", number=5)
fit.lda <- train(diabetes~., data=PimaIndiansDiabetes, method="lda", metric="Accuracy", preProc=c("center", "scale"), trControl=control)
# summarize fit
print(fit.lda)

正则化回归

glmnet包中的glmnet()函数可以用于拟合正则化分类或回归模型。

分类模型:

# load the library
library(glmnet)
library(mlbench)
# load data
data(PimaIndiansDiabetes)
x <- as.matrix(PimaIndiansDiabetes[,1:8])
y <- as.matrix(PimaIndiansDiabetes[,9])
# fit model
fit <- glmnet(x, y, family="binomial", alpha=0.5, lambda=0.001)
# summarize the fit
print(fit)
# make predictions
predictions <- predict(fit, x, type="class")
# summarize accuracy
table(predictions, PimaIndiansDiabetes$diabetes) # caret
# load libraries
library(caret)
library(mlbench)
library(glmnet)
# Load the dataset
data(PimaIndiansDiabetes)
# train
set.seed(7)
control <- trainControl(method="cv", number=5)
fit.glmnet <- train(diabetes~., data=PimaIndiansDiabetes, method="glmnet", metric="Accuracy", preProc=c("center", "scale"), trControl=control)
# summarize fit
print(fit.glmnet)

回归模型:

# load the libraries
library(glmnet)
library(mlbench)
# load data
data(BostonHousing)
BostonHousing$chas <- as.numeric(as.character(BostonHousing$chas))
x <- as.matrix(BostonHousing[,1:13])
y <- as.matrix(BostonHousing[,14])
# fit model
fit <- glmnet(x, y, family="gaussian", alpha=0.5, lambda=0.001)
# summarize the fit
print(fit)
# make predictions
predictions <- predict(fit, x, type="link")
# summarize accuracy
mse <- mean((y - predictions)^2)
print(mse) # caret
# load libraries
library(caret)
library(mlbench)
library(glmnet)
# Load the dataset
data(BostonHousing)
# train
set.seed(7)
control <- trainControl(method="cv", number=5)
fit.glmnet <- train(medv~., data=BostonHousing, method="glmnet", metric="RMSE", preProc=c("center", "scale"), trControl=control)
# summarize fit
print(fit.glmnet)

非线性算法

非线性算法对模型函数形式的限定较少,这类模型通常具有高精度和方差大的特点。

k近邻法

caret包中的knn3()函数并没有建立模型,而是直接对训练集数据作出预测。它既可以用于分类模型也可以用于回归模型。

分类模型:

# knn direct classification

# load the libraries
library(caret)
library(mlbench)
# Load the dataset
data(PimaIndiansDiabetes)
# fit model
fit <- knn3(diabetes~., data=PimaIndiansDiabetes, k=3)
# summarize the fit
print(fit)
# make predictions
predictions <- predict(fit, PimaIndiansDiabetes[,1:8], type="class")
# summarize accuracy
table(predictions, PimaIndiansDiabetes$diabetes) # caret
# load libraries
library(caret)
library(mlbench)
# Load the dataset
data(PimaIndiansDiabetes)
# train
set.seed(7)
control <- trainControl(method="cv", number=5)
fit.knn <- train(diabetes~., data=PimaIndiansDiabetes, method="knn", metric="Accuracy", preProc=c("center", "scale"), trControl=control)
# summarize fit
print(fit.knn)

回归模型:

# load the libraries
library(caret)
library(mlbench)
# load data
data(BostonHousing)
BostonHousing$chas <- as.numeric(as.character(BostonHousing$chas))
x <- as.matrix(BostonHousing[,1:13])
y <- as.matrix(BostonHousing[,14])
# fit model
fit <- knnreg(x, y, k=3)
# summarize the fit
print(fit)
# make predictions
predictions <- predict(fit, x)
# summarize accuracy
mse <- mean((BostonHousing$medv - predictions)^2)
print(mse) # caret
# load libraries
library(caret)
data(BostonHousing)
# Load the dataset
data(BostonHousing)
# train
set.seed(7)
control <- trainControl(method="cv", number=5)
fit.knn <- train(medv~., data=BostonHousing, method="knn", metric="RMSE", preProc=c("center", "scale"), trControl=control)
# summarize fit
print(fit.knn)

朴素贝叶斯算法

e1071包中的naiveBayes()函数可用于拟合分类问题中的朴素贝叶斯模型。

# load the libraries
library(e1071)
library(mlbench)
# Load the dataset
data(PimaIndiansDiabetes)
# fit model
fit <- naiveBayes(diabetes~., data=PimaIndiansDiabetes)
# summarize the fit
print(fit)
# make predictions
predictions <- predict(fit, PimaIndiansDiabetes[,1:8])
# summarize accuracy
table(predictions, PimaIndiansDiabetes$diabetes) # caret
# load libraries
library(caret)
library(mlbench)
# Load the dataset
data(PimaIndiansDiabetes)
# train
set.seed(7)
control <- trainControl(method="cv", number=5)
fit.nb <- train(diabetes~., data=PimaIndiansDiabetes, method="nb", metric="Accuracy", trControl=control)
# summarize fit
print(fit.nb)

支持向量机算法

kernlab包中的ksvm()函数可用于拟合分类和回归问题中的支持向量机模型。

分类模型:

# Classification Example:
# load the libraries
library(kernlab)
library(mlbench)
# Load the dataset
data(PimaIndiansDiabetes)
# fit model
fit <- ksvm(diabetes~., data=PimaIndiansDiabetes, kernel="rbfdot")
# summarize the fit
print(fit)
# make predictions
predictions <- predict(fit, PimaIndiansDiabetes[,1:8], type="response")
# summarize accuracy
table(predictions, PimaIndiansDiabetes$diabetes) # caret
# load libraries
library(caret)
library(mlbench)
# Load the dataset
data(PimaIndiansDiabetes)
# train
set.seed(7)
control <- trainControl(method="cv", number=5)
fit.svmRadial <- train(diabetes~., data=PimaIndiansDiabetes, method="svmRadial", metric="Accuracy", trControl=control)
# summarize fit
print(fit.svmRadial)

回归模型:

# Regression Example:
# load the libraries
library(kernlab)
library(mlbench)
# load data
data(BostonHousing)
# fit model
fit <- ksvm(medv~., BostonHousing, kernel="rbfdot")
# summarize the fit
print(fit)
# make predictions
predictions <- predict(fit, BostonHousing)
# summarize accuracy
mse <- mean((BostonHousing$medv - predictions)^2)
print(mse) # caret
# load libraries
library(caret)
library(mlbench)
# Load the dataset
data(BostonHousing)
# train
set.seed(7)
control <- trainControl(method="cv", number=5)
fit.svmRadial <- train(medv~., data=BostonHousing, method="svmRadial", metric="RMSE", trControl=control)
# summarize fit
print(fit.svmRadial)

分类和回归树

rpart包中的rpart()函数可用于拟合CART分类树和回归树模型。

分类模型:

# load the libraries
library(rpart)
library(mlbench)
# Load the dataset
data(PimaIndiansDiabetes)
# fit model
fit <- rpart(diabetes~., data=PimaIndiansDiabetes)
# summarize the fit
print(fit)
# make predictions
predictions <- predict(fit, PimaIndiansDiabetes[,1:8], type="class")
# summarize accuracy
table(predictions, PimaIndiansDiabetes$diabetes) # caret
# load libraries
library(caret)
library(mlbench)
# Load the dataset
data(PimaIndiansDiabetes)
# train
set.seed(7)
control <- trainControl(method="cv", number=5)
fit.rpart <- train(diabetes~., data=PimaIndiansDiabetes, method="rpart", metric="Accuracy", trControl=control)
# summarize fit
print(fit.rpart)

回归模型:

# load the libraries
library(rpart)
library(mlbench)
# load data
data(BostonHousing)
# fit model
fit <- rpart(medv~., data=BostonHousing, control=rpart.control(minsplit=5))
# summarize the fit
print(fit)
# make predictions
predictions <- predict(fit, BostonHousing[,1:13])
# summarize accuracy
mse <- mean((BostonHousing$medv - predictions)^2)
print(mse) # caret
# load libraries
library(caret)
library(mlbench)
# Load the dataset
data(BostonHousing)
# train
set.seed(7)
control <- trainControl(method="cv", number=2)
fit.rpart <- train(medv~., data=BostonHousing, method="rpart", metric="RMSE", trControl=control)
# summarize fit
print(fit.rpart)

其他算法

R 语言中还提供了许多caret可以使用的机器学习算法。我建议你去探索更多的算法,并将其运用到你的下个机器学习项目中。

Caret Model List这个网页上提供了caret中机器学习算法的函数和其相应软件包的映射关系。你可以通过它了解如何利用caret构建机器学习模型。

总结

本文中介绍了八个常用的机器学习算法:

  1. 线性回归模型
  2. 罗吉斯回归模型
  3. 线性判别分析
  4. 正则化回归
  5. k近邻
  6. 朴素贝叶斯
  7. 支持向量机
  8. 分类和回归树

从上文的介绍中,你可以学到如何利用 R 语言中的包和函数实现这些算法。同时你还可以学会如何利用caret包实现上文提到的所有机器学习算法。最后,你还可以将这些算法运用到你的机器学习项目中。

【R】如何确定最适合数据集的机器学习算法 - 雪晴数据网的更多相关文章

  1. R︱mlr包帮你挑选最适合数据的机器学习模型(分类、回归)+机器学习python和R互查手册

    一.R语言的mlr packages install.packages("mlr")之后就可以看到R里面有哪些机器学习算法.在哪个包里面. a<-listLearners() ...

  2. R︱foreach+doParallel并行+联用迭代器优化内存+并行机器学习算法

    要学的东西太多,无笔记不能学~~ 欢迎关注公众号,一起分享学习笔记,记录每一颗"贝壳"~ --------------------------- 接着之前写的并行算法paralle ...

  3. <转>机器学习系列(9)_机器学习算法一览(附Python和R代码)

    转自http://blog.csdn.net/han_xiaoyang/article/details/51191386 – 谷歌的无人车和机器人得到了很多关注,但我们真正的未来却在于能够使电脑变得更 ...

  4. python语言和R语言实现机器学习算法

    <转>机器学习系列(9)_机器学习算法一览(附Python和R代码)   转自http://blog.csdn.net/han_xiaoyang/article/details/51191 ...

  5. 建模分析之机器学习算法(附python&R代码)

    0序 随着移动互联和大数据的拓展越发觉得算法以及模型在设计和开发中的重要性.不管是现在接触比较多的安全产品还是大互联网公司经常提到的人工智能产品(甚至人类2045的的智能拐点时代).都基于算法及建模来 ...

  6. 10 种机器学习算法的要点(附 Python 和 R 代码)

    本文由 伯乐在线 - Agatha 翻译,唐尤华 校稿.未经许可,禁止转载!英文出处:SUNIL RAY.欢迎加入翻译组. 前言 谷歌董事长施密特曾说过:虽然谷歌的无人驾驶汽车和机器人受到了许多媒体关 ...

  7. 2018-02-03-PY3下经典数据集iris的机器学习算法举例-零基础

    ---layout: posttitle: 2018-02-03-PY3下经典数据集iris的机器学习算法举例-零基础key: 20180203tags: 机器学习 ML IRIS python3mo ...

  8. 从Iris数据集开始---机器学习入门

    代码多来自<Introduction to Machine Learning with Python>. 该文集主要是自己的一个阅读笔记以及一些小思考,小总结. 前言 在开始进行模型训练之 ...

  9. 机器学习算法的基本知识(使用Python和R代码)

    本篇文章是原文的译文,然后自己对其中做了一些修改和添加内容(随机森林和降维算法).文章简洁地介绍了机器学习的主要算法和一些伪代码,对于初学者有很大帮助,是一篇不错的总结文章,后期可以通过文中提到的算法 ...

随机推荐

  1. ubuntu14.04 配置中文输入法

    ubuntu14.04自带中文输入法,只要配置就可以了. 1.安装中文支持 System Settings -->  Language Support 点击 install/remove lan ...

  2. 数据结构算法C语言实现(十一)--- 3.4队列的链式表示和实现

    一.简介 FIFO. 二.头文件 //3_4_part1.h /** author:zhaoyu email:zhaoyu1995.com@gmail.com date:2016-6-9 note:r ...

  3. Windows_7_休眠按钮没有了_如何找回?

    1. 在运行中输入:   powercfg -h on或者在命令行下输入:   powercfg.exe /hibernate on注意:执行这个命令需要管理员权限. “休眠”回来了   2. 还是没 ...

  4. django redirect的几种方式

    You can use the redirect() function in a number of ways. By passing some object; that object’s get_a ...

  5. Linux学习一周初体验

    Linux一周初体验一.准备工欲善其事,必先利其器--虚拟机+Redhat7.0构成学习的环境.安装有条不紊.按部就班.......(涉及到的KVM.VNC.Root密码重置等内容,之后再详细了解)注 ...

  6. DS18B20函数库建立实验

    1.主代码: /* 温度传感器  */#include "DS18B20.h"#include"def.h"u16 get_temp (void){    fl ...

  7. AppleHDA 10.9.3 disassm 1

    1.通过AppleHDAFunctionGroupFactory::createAppleHDAFunctionGroup(DevIdStruct *)实际创建相应的 AppleHDAFunction ...

  8. Centos7.X 源码编译安装subversion svn1.8.x

    说明:SVN(subversion)的运行方式有两种:一种是基于Apache的http.https网页访问形式:还有一种是基于svnserve的独立服务器模式.SVN的数据存储方式也有两种:一种是在B ...

  9. codeforces 719A Vitya in the Countryside(序列判断趋势)

    题目链接:http://codeforces.com/problemset/problem/719/A 题目大意: 题目给出了一个序列趋势 0 .1 .2 .3 ---14 .15 .14 ----3 ...

  10. yourtour的几种链接

    php,html {:URL('User-Register/index')}    格式:http://www.xxx.com/index.php?g=User&m=User&a=in ...