Time Limit:2000MS     Memory Limit:262144KB     64bit IO Format:%I64d & %I64u

Description

A and B are preparing themselves for programming contests.

The University where A and B study is a set of rooms connected by corridors. Overall, the University has n rooms connected by n - 1corridors so that you can get from any room to any other one by moving along the corridors. The rooms are numbered from 1 to n.

Every day А and B write contests in some rooms of their university, and after each contest they gather together in the same room and discuss problems. A and B want the distance from the rooms where problems are discussed to the rooms where contests are written to be equal. The distance between two rooms is the number of edges on the shortest path between them.

As they write contests in new rooms every day, they asked you to help them find the number of possible rooms to discuss problems for each of the following m days.

Input

The first line contains integer n (1 ≤ n ≤ 105) — the number of rooms in the University.

The next n - 1 lines describe the corridors. The i-th of these lines (1 ≤ i ≤ n - 1) contains two integers ai and bi (1 ≤ ai, bi ≤ n), showing that the i-th corridor connects rooms ai and bi.

The next line contains integer m (1 ≤ m ≤ 105) — the number of queries.

Next m lines describe the queries. The j-th of these lines (1 ≤ j ≤ m) contains two integers xj and yj (1 ≤ xj, yj ≤ n) that means that on the j-th day A will write the contest in the room xj, B will write in the room yj.

Output

In the i-th (1 ≤ i ≤ m) line print the number of rooms that are equidistant from the rooms where A and B write contest on the i-th day.

Sample Input

Input
4
1 2
1 3
2 4
1
2 3
Output
1
Input
4
1 2
2 3
2 4
2
1 2
1 3
Output
0
2

Hint

in the first sample there is only one room at the same distance from rooms number 2 and 3 — room number 1.

思路:

题意:给你一棵有n个节点的树,m个询问,每个询问a,b,求树中到a,b距离相等的节点个数

我们先使得deg[a] >= deg[b]

首先,若a~b之间的距离为奇数的话,找不到唯一的中点,此时答案为0

(怎么求a~b之间的距离呢?预处理节点i到根的距离(此处为深度)deg[i],求出lcaq = lca(a,b);

那么dist(a,b) = deg[a] - deg[lcaq] + deg[b] - deg[lcaq];)

否则:找出ab路径的中点mid,calc(u, d)可以找出节点u的深度为d的祖先,也就是我们求出中点的深度就可以找出中点!

怎么求中点的深度dmid?通过画图可知:

dmid = dist(a,b) / 2  - deg[b] + 2 * deg[lcaq];

最终答案的计算:num[i]表示以节点i为根的子树的节点总数

若a和b的深度相同,那么ans = num[lcaq] - num[xa] - num[xb]; 其中xa是lcaq在a~lcaq的下一个节点,xb是lcaq在b~lcaq的下一个节点

若a和b深度不同,那么ans = num[mid] - num[k], 其中k表示ab的中点的下一位置(在a和b路径上靠近a的下一位置),画图可以理解。

#include <bits/stdc++.h>
using namespace std; const int N = 1e5 + 5;
struct edge {
int v, to;
edge() {};
edge(int v, int to) : v(v), to(to) {};
}e[N << 1];
int head[N], num[N], deg[N], tot, n, m;
int p[N][30]; void init()
{
memset(head, -1, sizeof head);
memset(p, -1, sizeof p);
tot = 0;
}
void addedge(int u, int v)
{
e[tot] = edge(v, head[u]);
head[u] = tot++;
}
void dfs(int u, int fa, int d)
{
deg[u] = d; p[u][0] = fa; num[u] = 1;
for(int i = head[u]; ~i; i = e[i].to) {
int v = e[i].v;
if(v != fa) {
dfs(v, u, d + 1);
num[u] += num[v];
}
}
}
void pre()
{
for(int j = 0; (1 << j) <= n; ++j)
for(int i = 1; i <= n; ++i) {
if(p[i][j - 1] != -1)
p[i][j] = p[ p[i][j - 1] ][j - 1];
}
} int calc(int u, int d) ///返回节点u的深度为d的祖先
{
for(int j = 25; j >= 0; --j) {
if(deg[u] - (1 << j) >= d) u = p[u][j];
}
return u;
}
int lca(int a, int b)
{
a = calc(a, deg[b]);///使a和b处在同一层
if(a == b) return a; ///若此时a和b相等,那么lca就是a
///否则a和b同时向上爬
for(int j = 25; j >= 0; --j) {
if(p[a][j] != -1 && p[a][j] != p[b][j]) {
a = p[a][j];
b = p[b][j];
}
}
return p[a][0];
}
int main()
{
while(~scanf("%d", &n))
{
init();
int u, v;
for(int i = 1; i < n; ++i) {
scanf("%d%d", &u, &v);
addedge(u, v);
addedge(v, u);
}
dfs(1, -1, 0);
pre(); scanf("%d", &m);
int a, b;
while(m --)
{
scanf("%d%d", &a, &b);
if(deg[a] < deg[b]) swap(a, b);
if(a == b) { printf("%d\n", n); continue; }
int lcaq = lca(a, b);
int dist = deg[a] + deg[b] - 2 * deg[lcaq]; ///a和b之间的距离
if(dist & 1) { puts("0"); continue; }
if(deg[a] == deg[b]) { ///xa和xb分别是在a~lca和b~lca的路径上距离lca为1的点
int xa = calc(a, deg[lcaq] + 1);
int xb = calc(b, deg[lcaq] + 1);
printf("%d\n", n - num[xa] - num[xb]);
}
else {
int mid = dist / 2 - deg[b] + 2 * deg[lcaq]; ///mid为ab之间的路径的中点的深度
printf("%d\n", num[ calc(a, mid) ] - num[ calc(a, mid + 1) ]);
}
}
}
return 0;
}

  

codeforces 519E A and B and Lecture Rooms LCA倍增的更多相关文章

  1. codeforces 519E A and B and Lecture Rooms(LCA,倍增)

    转载请注明出处: http://www.cnblogs.com/fraud/          ——by fraud E. A and B and Lecture Rooms A and B are ...

  2. Codeforces 519E A and B and Lecture Rooms

    http://codeforces.com/contest/519/problem/E 题意: 给出一棵树和m次询问,每次询问给出两个点,求出到这两个点距离相等的点的个数. 思路: lca...然后直 ...

  3. CodeForces 519E A and B and Lecture Rooms(倍增)

    A and B are preparing themselves for programming contests. The University where A and B study is a s ...

  4. Codeforces 519E A and B and Lecture Rooms [倍增法LCA]

    题意: 给你一棵有n个节点的树,给你m次询问,查询给两个点,问树上有多少个点到这两个点的距离是相等的.树上所有边的边权是1. 思路: 很容易想到通过记录dep和找到lca来找到两个点之间的距离,然后分 ...

  5. [codeforces 519E]E. A and B and Lecture Rooms(树上倍增)

    题目:http://codeforces.com/problemset/problem/519/E 题意:给你一个n个点的树,有m个询问(x,y),对于每个询问回答树上有多少个点和x,y点的距离相等 ...

  6. A and B and Lecture Rooms(LCA)

    题目描述 A and B are preparing themselves for programming contests. The University where A and B study i ...

  7. Codeforces Round #294 (Div. 2) A and B and Lecture Rooms(LCA 倍增)

    A and B and Lecture Rooms time limit per test 2 seconds memory limit per test 256 megabytes input st ...

  8. [CF Round #294 div2] E. A and B and Lecture Rooms 【树上倍增】

    题目链接:E. A and B and Lecture Rooms 题目大意 给定一颗节点数10^5的树,有10^5个询问,每次询问树上到xi, yi这两个点距离相等的点有多少个. 题目分析 若 x= ...

  9. CodeForces 519E 树形DP A and B and Lecture Rooms

    给出一棵树,有若干次询问,每次询问距两个点u, v距离相等的点的个数. 情况还挺多的,少侠不妨去看官方题解.^_^ #include <iostream> #include <cst ...

随机推荐

  1. HDU 5898 odd-even number (数位DP) -2016 ICPC沈阳赛区网络赛

    题目链接 题意:一个数字,它每个数位上的奇数都形成偶数长度的段,偶数位都形成奇数长度的段他就是好的.问[L , R]的好数个数. 题解:裸的数位dp, 从高到低考虑每个数位, 状态里存下到当前位为止的 ...

  2. 使用rdesktop连接Windows远程桌面

    rdesktop 使用简单,windows也不和装什么服务端,是要把远程桌面共享打开就行了 安装 yum -y install rdesktop 具体使用方法要先打开终端,然后输入以下命令: rdes ...

  3. [Android Pro] adb 进入 recovery, adb 进入 bootloader

    reference to : http://blog.csdn.net/mldxs/article/details/18699965 重启到Recovery界面 adb reboot recovery ...

  4. Swift - UIViewController

    UIViewController类详解: 通过Nib文件初始化 init(nibName nibName: String?, bundle nibBundle: NSBundle?) println( ...

  5. NYOJ题目889求距离

    aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAsYAAAJ2CAIAAADTwNOXAAAgAElEQVR4nO3dPVLrSteG4W8S5B4IsQ

  6. PHP之MVC项目实战(二)

    本文主要包括以下内容 GD库图片操作 利用GD库实现验证码 文件上传 缩略图 水印 GD库图片操作 <?php $img = imagecreatetruecolor(500, 300); // ...

  7. mysql的事务处理

    事务用于保证数据的一致性,它由一组相关的DML语句组成,该组的DML语句要么全部成功,要么全部失败. 示例: 银行账单 $mysqli=new mysqli("localhost" ...

  8. 与你相遇好幸运,mbview的mbtiles文件分析

    mbview是一个查看.mbtiles文件的本地程序. https://github.com/mapbox/mbview .mbtiles文件就是一个Sqlite文件,用Navicat Premium ...

  9. php支付宝接口用法

    现在流行的网站支持平台,支付宝当仁不让的老大了,现在我们就来告诉你如何使用支付宝api来做第三方支付,把支付宝放到自己网站来, alipay_config.php配置程序如下: <?php */ ...

  10. C# 根据ADO.NET数据库连接字符串构建EntityFrame数据库连接字符串

    为了保持开发效率,以及保持代码优雅,项目中引用了EntityFrame.但是又因为某些报表功能需要大量计算,所以又要求直接使用ADO.NET,调用存储过程进行计算. 于是乎webconfig文件中就会 ...