题目链接:http://noi.openjudge.cn/ch0206/2989/

首先,数据很大,直接用背包会re。

这里增加的是对%k 的余数维度。f[i][j] 表示前 i 种糖果取到总颗数模 k 余数为 j 的最大颗数。

注意一定要先将 f[i-1][j] 转移到 f[i][j] ,再枚举余数dp,不然会有重叠。答案是 f[n][0];

#include <bits/stdc++.h>
using namespace std; int a[];
int d[];
int f[][]; /*
int main()
{
int n,k;
int sum = 0;
scanf("%d%d",&n,&k);
for(int i=1;i<=n;i++) {
scanf("%d",&a[i]);
sum+=a[i];
} int t = sum/k;
sum = t*k;
for(int i=1;i<=n;i++) {
for(int j=sum;j>=0;j--) {
if(j>=a[i]) {
d[j] = max(d[j],d[j-a[i]]+a[i]);
}
}
}
bool flag = false;
for(;;) {
if(d[sum]%k==0) {
printf("%d\n",d[sum]);
flag = true;
break;
}
else sum = sum - k;
}
if(!flag)
puts("0"); return 0;
}
*/ int main()
{
int n,k;
scanf("%d%d",&n,&k); memset(f,,sizeof(f));
for(int i=; i<=n; i++)
scanf("%d",&a[i]);
for(int i=; i<=n; i++)
{
for(int q=; q<=k-; q++)
f[i][q]=f[i-][q];
for(int j=; j<=k-; j++)
if(f[i-][j]+a[i]>f[i][(f[i-][j]+a[i])%k])
f[i][(f[i-][j]+a[i])%k]=f[i-][j]+a[i];
}
printf("%d",f[n][]);
return ;
}

noi 2989 糖果的更多相关文章

  1. NOI 动态规划题集

    noi 1996 登山 noi 8780 拦截导弹 noi 4977 怪盗基德的滑翔翼 noi 6045 开餐馆 noi 2718 移动路线 noi 2728 摘花生 noi 2985 数字组合 no ...

  2. 2016.4.3 动态规划NOI专练 王老师讲课整理

    1.6049:买书 总时间限制:  1000ms 内存限制:  65536kB 描述 小明手里有n元钱全部用来买书,书的价格为10元,20元,50元,100元. 问小明有多少种买书方案?(每种书可购买 ...

  3. NOIWC前的交流题目汇总

    RT 2018.12.27 i207M:BZOJ 4695 最假女选手 以维护最大值为例,记录最大值和严格次大值和最大值的出现次数,然后取min的时候递归到小于最大值但大于次大值修改,这个就是最重要的 ...

  4. noi 1944 吃糖果

    题目链接:http://noi.openjudge.cn/ch0206/1944/ 根据第一天吃的个数递推,发现这个递推关系很像斐波那契数列. http://paste.ubuntu.com/2340 ...

  5. 【noi 2.6_2989】糖果(DP)

    题意:求取到总和为K的倍数的糖果的最大值. 解法:用模K的余数作为一个维度,f[i][j]表示在前i种糖果中取到总颗数模K余j的最大总颗数. 注意--f[i-1][j]要正常转移,而其他要之前的状态存 ...

  6. NOI.AC NOIP模拟赛 第一场 补记

    NOI.AC NOIP模拟赛 第一场 补记 candy 题目大意: 有两个超市,每个超市有\(n(n\le10^5)\)个糖,每个糖\(W\)元.每颗糖有一个愉悦度,其中,第一家商店中的第\(i\)颗 ...

  7. 【FINAL】NOI

    我就是复习一下..根本就不是什么题解...谁也看不懂的... NOI2007 社交网络         最短路 货币兑换         斜率优化动态规划 项链工厂         线段树 生成树计数 ...

  8. 原生js可爱糖果数字时间特效

    效果展示:http://hovertree.com/texiao/js/35/ 数字采用漂亮的糖果皮肤设计 效果图: 代码如下: <!DOCTYPE html> <html> ...

  9. UOJ #58 【WC2013】 糖果公园

    题目链接:糖果公园 听说这是一道树上莫队的入门题,于是我就去写了--顺便复习了一下莫队的各种姿势. 首先,我们要在树上使用莫队,那么就需要像序列一样给树分块.这个分块的过程就是王室联邦这道题(vfle ...

随机推荐

  1. php图片转为资源数据

    $file='C:\Users\feng\Desktop\images\banner.png';  //图片路径 $type=getimagesize($file);                 ...

  2. Java FTPClient实现文件上传下载

    在JAVA程序中,经常需要和FTP打交道,比如向FTP服务器上传文件.下载文件,本文简单介绍如何利用jakarta commons中的FTPClient(在commons-net包中)实现上传下载文件 ...

  3. BizTalk动手实验(六)Orchestration开发

    1 课程简介 通过本课程熟悉Orchestration的相关开发与测试技术 2 准备工作 熟悉XML.XML Schema.XSLT等相关XML开发技术 熟悉.NET相关开发技术 新建BizTalk空 ...

  4. Bash中各种以$开头的特殊变量的含义

    $$ Shell本身的PID(ProcessID) $! Shell最后运行的后台Process的PID $? 最后运行的命令的结束代码(返回值) $- 使用Set命令设定的Flag一览 $* 所有参 ...

  5. JavaDate类

    在JDK1.0中,Date类是唯一的一个代表时间的类,但是由于Date类不便于实现国际化,所以从JDK1.1版本开始,推荐使用Calendar类进行时间和日期处理.这里简单介绍一下Date类的使用. ...

  6. centos7 挂载数据盘

    centos 挂载数据盘1.运行 fdisk -l 命令查看数据盘.注意:在没有分区和格式化数据盘之前,使用 df -h 命令是无法看到数据盘的. 如果执行了 fdisk -l 命令后,没有发现 /d ...

  7. 快速掌握Flyway

    什么是Flyway? Flyway is an open-source database migration tool. It strongly favors simplicity and conve ...

  8. ios - 纯代码创建collectionView

    开始考虑好一点点时间,因为一般的都是用xib,或者storyboard来写的.这次用纯代码...废话较多请看 首先把storyboard干掉,工程里面的main干掉 由于干掉了storyboard则启 ...

  9. DuiLib学习笔记1——编译运行demo

    c++中皮肤问题比较麻烦,MFC自带的太难用.DirectUI界面库就比较强大了,之前像skin++之类的基于DirectUI收费昂贵.DuiLib是基于DirectUI的界面库,可以将用户界面和处理 ...

  10. PPAS Migration Toolkit document

    -----------------Migration Toolkit-----------------Migration Toolkit is a command line utility that ...