SX学SX内容 笔记?
某帖子笔记1
集合论
集合就是一堆东西...满足
- 1) 集合中的元素互异(即每种只有一个)
- 2) 集合中的元素无序(不是一个数组,集合中的元素没有显然的排序法则)
- 3) 集合是确定的(包括满足条件的所有东西,比如'一个集合包含有所有可能存在的集合'是不正确的)
组
组是一类数学对象.组是有序的、多元的.
组的表示方法:$(val1[,val_k]*)$
笛卡尔积
定义两个集合的笛卡尔积
\[S\times M=\\{(a,b)\mid a\in S,b\in M\\}\]
映射
映射是一种从一个集合到另一个集合的对应关系,对于默认朴素集合论的情况属于基本概念.
(注意,以下定义自指涉,但是可以用来了解映射的性质.)
映射可以看成由一个集合组成的对象\(f=mapping(\mathtt{MmapstoQ})\),其中\(\mathtt{MmapstoQ}\subseteq M\times Q\)且
\[\forall a\in M,\left( (\exists (b,c)\in \mathtt{MmapstoQ},b=a)\wedge(\neg (\exists (d,e)\in \mathtt{MmapstoQ}\setminus (b,c),d=a))\right)\]
此时记\(f:M\rightarrow Q\),\(c=f(a)\).
(到这里结束)
二元运算
\(\oplus:S\times S\rightarrow S\)将\(\oplus\)称为\(S\)上的一个二元运算,\(a\oplus b=\oplus((a,b))\)
逻辑学
布尔型
布尔型就是真和假.真就是\(\mathtt{true}\),一般可以用\(1\)表示,假就是\(\mathtt{false}\),用\(0\)表示.
我们可以把布尔型归入一个集合即Boolean集合:$\mathtt{Boolean}=\{ \mathtt{true},\mathtt{false} \} $
命题
一个命题可以看作一个映射\(\mathtt{P}:U\rightarrow \mathtt{Boolean}\),其中\(U\)是命题所判断对象的全集.
以下定义一个记号\(U_{\mathtt{P}}\),其定义是\(U_{\mathtt{P}}=\\{x\mid x\in U,\mathtt{P}(x)=\mathtt{true}\\}\)
布尔运算
- a and b => \(a \wedge b\)
- bool and bool = false
- true and true = true
- \(U_{P(x)\wedge Q(x)}=U_{P(x)}\cap U_{Q(x)}\)
- a and b => \(a \vee b\)
- bool or bool = true
- false or false = false
- \(U_{P(x)\vee Q(x)}=U_{P(x)}\cup U_{Q(x)}\)
- a imp b => \(a \rightarrow b\)
- bool imp bool = true
- false imp true = false
- \(P(x)\rightarrow Q(x) \Rightarrow U_{P(x)}\subseteq U_{Q(x)}\)
- a equip b => \(a \leftrightarrow b\)
- a equip b = [ a == b ]
- \(P(x)\leftrightarrow Q(x) \Rightarrow U_{P(x)}= U_{Q(x)}\)
- not a => \(\neg a\)
- not a = [ 1 - a ] : a as Boolean
- \(U_{\neg P(x)}=U\setminus U_{P(x)}\)
条件
充分条件 \(A\Rightarrow B\),\(A\)是\(B\)的充分条件.
必要条件 \(\neg A\Rightarrow \neg B\),\(A\)是\(B\)的必要条件.
命题表示法 \(\mathtt{P}(x)= x \rightarrow P\) \(x\)为条件 \(P\)为结果
逆命题 \(inv(P(x))=P \rightarrow x\)
否命题 \(neg(P(x))=\neg x \rightarrow \neg P\)
逆否命题 \(invneg(P)=inv(neg(P))\)
\[invneg(P) \Leftrightarrow P\~\~\~恒成立,这条由集合的二分律保证.\]
自然数
皮亚诺公理化体系
自然数是一个戴德金-皮亚诺结构,戴德金-皮亚诺结构是一个满足以下几个性质的三元组\(\mathbb{Z}=(S,f,e)\):
- \(e\in S\)
- \(f:S\rightarrow S\)
- \((\forall b\in S)(\forall c\in S)((f(b)=f(c))\Leftrightarrow (b=c))\)
- \((\forall a\in S)(\neg (f(a)=e))\)
\((\forall P\subseteq S)\left((e\in P)\wedge((\forall a\in P)(f(a)\in P))\Leftrightarrow (S=P)\right)\)
序数的冯·诺依曼定义
\[e={},f(x)=x\cup \\{x\\}\]
- 0 {}
- 1 {{{}}}
- 2 {{{}},{{{{}}}}}
- 3 {{{}},{{{{}}}},{{{{}},{{{{}}}}}}}
- 4 {{{}},{{{{}}}},{{{{}},{{{{}}}}}},{{{{}},{{{{}}}},{{{{}},{{{{}}}}}}}}}
- ...
然并卵
加法
定义加法为\(S\)上的二元运算\(+\)满足
- \((\forall a\in S)(a+e=a)\)
- \((\forall a,b\in S)(f(a)+b=f(a+b))\)
可以证明这种运算的唯一性.即假设有两种不同定义的二元运算满足以上条件为\(+\)和\(\oplus\),可以发现\((\forall a,b\in S)(a+b=a\oplus b)\).
SX学SX内容 笔记?的更多相关文章
- 跟着鸟哥学Linux系列笔记3-第11章BASH学习
跟着鸟哥学Linux系列笔记0-扫盲之概念 跟着鸟哥学Linux系列笔记0-如何解决问题 跟着鸟哥学Linux系列笔记1 跟着鸟哥学Linux系列笔记2-第10章VIM学习 认识与学习bash 1. ...
- 跟着鸟哥学Linux系列笔记2-第10章VIM学习
跟着鸟哥学Linux系列笔记0-扫盲之概念 跟着鸟哥学Linux系列笔记0-如何解决问题 跟着鸟哥学Linux系列笔记1 常用的文本编辑器:Emacs, pico, nano, joe, vim VI ...
- 《Linux就该这么学》培训笔记_ch02_一些必须掌握的Linux命令
本文在原来作者的基础上做一些符合自己的修改.原文参考: <Linux就该这么学>培训笔记_ch02_一些必须掌握的Linux命令. 本章的内容虽然多,基本都是书本原话,但是笔记能精 ...
- 《Linux就该这么学》培训笔记_ch00_认识Linux系统和红帽认证
<Linux就该这么学>培训笔记_ch00_认识Linux系统和红帽认证 文章最后会post上书本的笔记照片. 文章主要内容: 认识开源 Linux系统的种类及优势特性 认识红帽系统及红帽 ...
- 《Linux就该这么学》培训笔记_ch01_部署虚拟环境安装Linux系统
<Linux就该这么学>培训笔记_ch01_部署虚拟环境安装Linux系统 文章最后会post上书本的笔记照片. 文章主要内容: 在虚拟机中安装红帽RHEL7系统 在Linux系统中找回r ...
- 《Linux就该这么学》培训笔记_ch03_管道符、重定向与环境变量
<Linux就该这么学>培训笔记_ch03_管道符.重定向与环境变量 文章最后会post上书本的笔记照片. 文章主要内容: 输入输出重定向 管道命令符 命令行的通配符 常用的转义字符 重要 ...
- 《Linux就该这么学》培训笔记_ch04_Vim编辑器与Shell命令脚本
<Linux就该这么学>培训笔记_ch04_Vim编辑器与Shell命令脚本 文章最后会post上书本的笔记照片. 文章主要内容: Vim编辑器 Shell脚本 流程控制语句 if语句 f ...
- 《Linux就该这么学》培训笔记_ch05_用户身份与文件权限
<Linux就该这么学>培训笔记_ch05_用户身份与文件权限 文章最后会post上书本的笔记照片. 文章主要内容: 用户身份与能力 文件权限与归属 文件的特殊权限 文件的隐藏属性 文件访 ...
- 《Linux就该这么学》培训笔记_ch06_存储结构与磁盘划分
<Linux就该这么学>培训笔记_ch06_存储结构与磁盘划分 文章最后会post上书本的笔记照片. 文章主要内容: Linux系统的文件存储结构(FHS标准) 物理设备命名规则(udev ...
随机推荐
- 通过XHR API来下载和上传图片
1.不用HTML中的img标签来下载图片,通过XHR api来下载图片: var xhr = new XMLHttpRequest(); xhr.open('GET','/img/tooth-int ...
- Node.js Tools 1.2 for Visual Studio 2015 released
https://blogs.msdn.microsoft.com/visualstudio/2016/07/28/node-js-tools-1-2-visual-studio-2015/ What ...
- Python之路【第十一篇续】前端之CSS补充
CSS续 1.标签选择器 为类型标签设置样式例如:<div>.<a>.等标签设置一个样式,代码如下: <style> /*标签选择器,如果启用标签选择器所有指定的标 ...
- Python开发【第十一篇】:JavaScript
JavaScript是一门编程语言,浏览器内置了JavaScript语言的解释器,所以在浏览器上按照JavaScript语言的规则编写相应代码之,浏览器可以解释并做出相应的处理. 一.如何编写 1.J ...
- Quartz-2D
Quartz 2D是一个二维图形绘制引擎,支持iOS环境和Mac OS X环境.我们可以使用Quartz 2D API来实现许多功能,如基本路径的绘制.透明度.描影.绘制阴影.透明层.颜色管理.反锯齿 ...
- ctrl+c,ctrl+d,ctrl+z在linux中意义
ctrl+c,ctrl+d,ctrl+z在linux中意义 ctrl+c和ctrl+z都是中断命令,但是他们的作用却不一样. ctrl+c是强制中断程序的执行. ctrl+z的是将任务中断 ...
- gradle 默认属性
Properties(未翻译) Property Description allprojects 包含该项目及其子项目的属性 ant The AntBuilder for this project. ...
- 关于PHP位运算的简单权限设计
写在最前面 最近想写一个简单的关于权限处理的东西,之前我也了解过用二进制数的位运算可以出色地完成这个任务.关于二进制数 的位运算,常见的就是“或.与.非”这三种简单运算了,当然,我也查看了下PHP手册 ...
- 利用UIActivityController调用ios系统自带的分享功能,实现微信发布多图的功能
通过一番查找以后找到一个类UIActivityController,可以调用系统的social.framework中的分享接口.看下面的图就知道了,这个还是挺常见的 微信发布多图 借鉴了CSDN上的一 ...
- linux下系统对于sigsegv错误时的处理
一般来讲,对非法地址的访问会导致应用程序收到由系统发送的sigsegv信号,默认情况下,函数对于这个信号的处理是退出. 但是为了方便调试,我们可以自己设置处理函数,使用signal函数. 这里比较重要 ...