Sol

容斥原理+Matrix-Tree定理.容斥跟小星星那道题是一样的,然后...直接Matrix-Tree定理就可以了...

复杂度\(O(2^{n-1}n^3)\)

PS:调了好久啊QAQ 明明知道了Matrix-Tree定理了以后非常简单QAQ n-1写成n 直接真·爆0.

Code

/**************************************************************
Problem: 4596
User: BeiYu
Language: C++
Result: Accepted
Time:6040 ms
Memory:1296 kb
****************************************************************/ #include<cstdio>
#include<cstring>
#include<utility>
#include<vector>
#include<iostream>
using namespace std; #define mpr(a,b) make_pair(a,b)
#define _0(x) ((x>0?x:-x)>0)
typedef long long LL;
const int N = 18;
const LL p = 1000000007; int n,cnt,S;LL ans;int pow2[N];
vector<pair<int,int> > g[N];
LL a[N][N]; inline int in(int x=0,char ch=getchar()){ while(ch>'9'||ch<'0') ch=getchar();
while(ch>='0'&&ch<='9') x=(x<<3)+(x<<1)+ch-'0',ch=getchar();return x; }
LL Pow(LL a,LL b,LL res=1){ for(;b;b>>=1,a=a*a%p) if(b&1) res=res*a%p;return res; }
void Build(int S){
memset(a,0,sizeof(a));cnt=0;
for(int i=0;i<n-1;i++) if(S&pow2[i]){
cnt++;
for(int j=0;j<g[i].size();j++){
int u=g[i][j].first,v=g[i][j].second;
a[u][v]--,a[v][u]--,a[u][u]++,a[v][v]++;
}
}
for(int i=0;i<n;i++) for(int j=0;j<n;j++) a[i][j]=(a[i][j]+p)%p;
// for(int i=0;i<n;i++) for(int j=0;j<n;j++) printf("%10I64d%c",a[i][j]," \n"[j==n-1]);
// cout<<"*******************"<<endl;
}
LL det(int n){
LL res=1;int swpt=0;
for(int i=0,j,k;i<n;i++){
if(!_0(a[i][i])){
for(j=i+1;j<n;j++) if(_0(a[j][i])) break;
if(j>=n) return 0;
for(k=i;k<n;k++) swap(a[i][k],a[j][k]);
swpt++;
}
res=(res*a[i][i]%p+p)%p;
LL inv=Pow(a[i][i],p-2);
// for(j=i+1;j<n;j++) a[i][j]/=a[i][i];
// for(j=i+1;j<n;j++) for(k=i+1;k<n;k++) a[j][k]-=a[j][i]*a[i][k];
for(j=i+1;j<n;j++) for(k=i+1;k<n;k++) a[j][k]=(a[j][k]-a[j][i]*a[i][k]%p*inv%p+p)%p;
}if(swpt&1) return -res;return res;
}
int main(){
n=in();pow2[0]=1;for(int i=1;i<17;i++) pow2[i]=pow2[i-1]<<1;
for(int i=0;i<n-1;i++){ int x=in();for(int j=1,u,v;j<=x;j++) u=in()-1,v=in()-1,g[i].push_back(mpr(u,v)); }
for(S=1;S<pow2[n-1];S++){
// Build(S);
// cout<<cnt<<" "<<det(n-1)<<endl;
Build(S);
if((n-1-cnt)&1) ans=(ans-det(n-1)+p)%p;else ans=(ans+det(n-1))%p;
}cout<<(ans+p)%p<<endl;return 0;
}

  

  

BZOJ 4596: [Shoi2016]黑暗前的幻想乡的更多相关文章

  1. bzoj 4596 [Shoi2016]黑暗前的幻想乡 矩阵树定理+容斥

    4596: [Shoi2016]黑暗前的幻想乡 Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 559  Solved: 325[Submit][Sta ...

  2. ●BZOJ 4596 [Shoi2016]黑暗前的幻想乡

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=4596 题解: 容斥,矩阵树定理,矩阵行列式 先说说容斥:(一共有 N-1个公司) 令 f[i ...

  3. bzoj 4596: [Shoi2016]黑暗前的幻想乡【容斥原理+矩阵树定理】

    真是简单粗暴 把矩阵树定理的运算当成黑箱好了反正我不会 这样我们就可以在O(n^3)的时间内算出一个无向图的生成树个数了 然后题目要求每个工程队选一条路,这里可以考虑容斥原理:全选的方案数-不选工程队 ...

  4. BZOJ 4596: [Shoi2016]黑暗前的幻想乡(容斥+Matrix_Tree)

    传送门 解题思路 看到计数想容斥--\(from\) \(shadowice1984\)大爷.首先求出原图的生成树个数比较容易,直接上矩阵树定理,但这样会多算一点东西,会把\(n-2\)个公司的多算进 ...

  5. 【BZOJ 4596】 4596: [Shoi2016]黑暗前的幻想乡 (容斥原理+矩阵树定理)

    4596: [Shoi2016]黑暗前的幻想乡 Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 324  Solved: 187 Description ...

  6. 【BZOJ】4596: [Shoi2016]黑暗前的幻想乡

    [题意]给定n个点的无向完全图,有n-1个公司各自分管一部分路,要求所有公司都有修路的生成树数.n<=17. [算法]容斥原理+生成树计数(矩阵树定理) [题解]每个生成树方案是一个公司有无修路 ...

  7. bzoj4596[Shoi2016]黑暗前的幻想乡 Matrix定理+容斥原理

    4596: [Shoi2016]黑暗前的幻想乡 Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 464  Solved: 264[Submit][Sta ...

  8. bzoj4596/luoguP4336 [SHOI2016]黑暗前的幻想乡(矩阵树定理,容斥)

    bzoj4596/luoguP4336 [SHOI2016]黑暗前的幻想乡(矩阵树定理,容斥) bzoj Luogu 题解时间 看一看数据范围,求生成树个数毫无疑问直接上矩阵树定理. 但是要求每条边都 ...

  9. [ZJOI2016]小星星&[SHOI2016]黑暗前的幻想乡(容斥)

    这两道题思路比较像,所以把他们放到一块. [ZJOI2016]小星星 题目描述 小Y是一个心灵手巧的女孩子,她喜欢手工制作一些小饰品.她有n颗小星星,用m条彩色的细线串了起来,每条细线连着两颗小星星. ...

随机推荐

  1. 带条件Count

    END) , END) , END) , END) FROM TB

  2. Win7系统中提示:本地无法启动MySQL服务,报的错误:1067,进程意外终止的解决方法。

    Win7系统中提示:本地无法启动MySQL服务,报的错误:1067,进程意外终止的解决方法. 在本地计算机无法启动MYSQL服务错误1067进程意外终止.这种情况一般是my.ini文件配置出错了1.首 ...

  3. jQuery监听键盘事件及相关操作使用教程

    一.首先需要知道的是: 1.keydown() keydown事件会在键盘按下时触发. 2.keyup() keyup事件会在按键释放时触发,也就是你按下键盘起来后的事件 3.keypress() k ...

  4. centos 安装 svn-1.9.4

    wget http://mirrors.cnnic.cn/apache/subversion/subversion-1.9.4.tar.gzwget http://mirror.bit.edu.cn/ ...

  5. jquery音乐播放器(歌词滚动版)

    好久没出来水了!!!忙忙碌碌的找工作~然后中秋节也算过了,祝各位coding们,直接觉醒第七感小宇宙,直接用心就能找到bug-_-// 最后如题这是一篇很正规的coding的文章 大概么比以前的加了个 ...

  6. ASO优化总结(基于网络分享的知识总结归纳)

    如何优化应用标题? 注意关键字的长度,尽量保证每一个关键字小于10个字符.保持快速更新,因为每次更新,你都将有机会删除表现不佳的关键字以 及增添新的关键字.在ASO中使用关键字的正确做法 标题,并非越 ...

  7. AngularJS API之bootstrap启动

    对于一般的使用者来说,AngularJS的ng-app都是手动绑定到某个dom元素.但是在一些应用中,这样就显得很不方便了. 绑定初始化 通过绑定来进行angular的初始化,会把js代码侵入到htm ...

  8. JDBC、JDBCTemplate、MyBatis、Hiberante 比较与分析

    JDBC (Java Data Base Connection,java数据库连接) JDBC(Java Data Base Connection,java数据库连接)是一种用于执行SQL语句的Jav ...

  9. Vno博客样式分享

    不知不觉有一年多没有更新博客了,还是几位园友因为喜欢这套博客样式发了消息,否则我都快忘记自己还有一个博客了,哈哈. 言归正传,这套博客样式是当时闲来无事copy的iOS界喵神的博客Vno,确实很漂亮, ...

  10. hadoop安装实战(mac实操)

    集群环境配置参考(http://blog.csdn.net/zcf1002797280/article/details/49500027) 参考:http://www.cnblogs.com/liul ...