子序列

时间限制:3000 ms  |  内存限制:65535 KB
难度:5
 
描述

给定一个序列,请你求出该序列的一个连续的子序列,使原串中出现的所有元素皆在该子序列中出现过至少1次。

如2 8 8 8 1 1,所求子串就是2 8 8 8 1。

 
输入
第一行输入一个整数T(0<T<=5)表示测试数据的组数
每组测试数据的第一行是一个整数N(1<=N<=1000000),表示给定序列的长度。
随后的一行有N个正整数,表示给定的序列中的所有元素。
数据保证输入的整数都不会超出32位整数的范围。
输出
对于每组输入,输出包含该序列中所有元素的最短子序列的长度
样例输入
2
5
1 8 8 8 1
6
2 8 8 8 1 1
样例输出
2
5 解题思路:刚开始看了网上的解题报告,有个类似的题,可以用stl中的集合set和键值对map来做,结果超时,实践发现每次数据一大,用STL就会超时。
离散化
:将a数组的备份temp[]排序,然后把不重复的值都弄到X数组中,接下来开始挨着求出a中的每一个元素在X中的位置,用index记录。
  这样每次到a[i],index[i]中记录的就是a[i]在X[]中的位置。
  尺取法:
  通过观察发现,所求序列的第一个一定是在序列中只出现1次的,不然就可以直接把这个舍去了。
  设置s,e分别为所求序列的起始和结束。
  e每次都++,然后当序列中元素个数==非重复元素个数len时,要用minn记录此时序列长度。然后再s++(直到X[index[s]]==1)。
  最后到e不小于n然后结束。
  
  

 代码:

#include<cstdio>
#include <iostream>
#include<map>
#include<set>
#include<algorithm>
#include <cstring>
#define MAXN 1000005 using namespace std; int n;
int cou;
int a[MAXN];//所有元素
int X[MAXN];//不重复元素
int temp[MAXN];//临时
int inde[MAXN];//存储a[]中每一个元素在X中的下标 int bin_search(int cou,int aa){
int s=,e=cou-;
int mid;
while(s<=e){
mid=(s+e)>>;
if(X[mid]==aa){
return mid;
}else{
if(aa<X[mid]){
e=mid-;
}else{
s=mid+;
}
} }
} void discrete(){
cou=;
sort(temp,temp+n);
X[]=temp[];
for(int i=;i<n;i++){
if(temp[i]!=temp[i-]){
X[cou++]=temp[i];
}
}
for(int i=;i<n;i++){
inde[i]=bin_search(cou,a[i]);
}
} int main()
{
int t;
scanf("%d",&t);
while(t--){ int minn=;
scanf("%d",&n);
for(int i=;i<n;i++){
scanf("%d",&a[i]);
temp[i]=a[i];
}
discrete();
memset(X,,sizeof(X));
int len=cou;
int s=,e=;
int number=;
while(e<n){
if(X[inde[e]]==) number++;
X[inde[e]]++;
while(X[inde[s]]>=){
X[inde[s]]--;
s++;
}
if(number==len){
minn=min(minn,e-s+);
/*if(X[inde[s]]==1)*/ number--;
X[inde[s]]--;
s++;
}
e++;
}
printf("%d\n",minn);
}
return ;
}

nyoj133_子序列_离散化_尺取法的更多相关文章

  1. BZOJ_4627_[BeiJing2016]回转寿司_离散化+树状数组

    BZOJ_4627_[BeiJing2016]回转寿司_离散化+树状数组 Description 酷爱日料的小Z经常光顾学校东门外的回转寿司店.在这里,一盘盘寿司通过传送带依次呈现在小Z眼前.不同的寿 ...

  2. 洛谷P1712 [NOI2016]区间 尺取法+线段树+离散化

    洛谷P1712 [NOI2016]区间 noi2016第一题(大概是签到题吧,可我还是不会) 链接在这里 题面可以看链接: 先看题意 这么大的l,r,先来个离散化 很容易,我们可以想到一个结论 假设一 ...

  3. BZOJ_[usaco2007 Nov]relays 奶牛接力跑_离散化+倍增弗洛伊德

    BZOJ_[usaco2007 Nov]relays 奶牛接力跑_离散化+倍增弗洛伊德 Description FJ的N(2 <= N <= 1,000,000)头奶牛选择了接力跑作为她们 ...

  4. Unique Snowflakes UVA - 11572 (离散化+尺取法)

    Emily the entrepreneur has a cool business idea: packaging and selling snowflakes. She has devised a ...

  5. POJ3666 线性dp_离散化_贪心

    POJ3666 线性dp_离散化_贪心 就DP而言这个题不算难,但是难就难在贪心,还有离散化的思想上 题目大意:n个土堆,问你最少移动多少单位的图,可以使得这n个土堆变成单调的 dp[i][j]表示前 ...

  6. 51Nod 1686 第K大区间(离散化+尺取法)

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1686 题意: 思路: 第K大值,所以可以考虑二分法,然后用尺取法去扫描, ...

  7. 离散化+线段树/二分查找/尺取法 HDOJ 4325 Flowers

    题目传送门 题意:给出一些花开花落的时间,问某个时间花开的有几朵 分析:这题有好几种做法,正解应该是离散化坐标后用线段树成端更新和单点询问.还有排序后二分查找询问点之前总花开数和总花凋谢数,作差是当前 ...

  8. NOI2016区间bzoj4653(线段树,尺取法,区间离散化)

    题目描述 在数轴上有 \(N\) 个闭区间 \([l_1,r_1],[l_2,r_2],...,[l_n,r_n]\) .现在要从中选出 \(M\) 个区间,使得这 \(M\) 个区间共同包含至少一个 ...

  9. POJ 尺取法

    poj3061 Subsequence 题目链接: http://poj.org/problem?id=3061 挑战P146.题意:给定长度为n的数列整数a0,a1,...,a(n-1)以及整数S, ...

随机推荐

  1. str_replace vs preg_replace

    转自:http://benchmarks.ro/2011/02/str_replace-vs-preg_replace/ 事实证明str_replace确实比preg_replace快. If you ...

  2. tcp/ip协议栈调用关系图

    最近阅读了tcp/ip详解卷2,总结一下整个发送过程和接收过程 sendmsg \/ sendit \/ sosend(这一步将数据从用户空间拷贝到内核空间,并且会在这一步判断发送缓存空间是否充足,是 ...

  3. 2012多校3.A(用O(log(n))判断b^k % a == 0)

    Arcane Numbers 1 Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Su ...

  4. jquery选择器(二)-层次选择器

    1. 后代选择器 2. 子元素选择器 3. 相邻兄弟元素选择器 4. 一般兄弟元素选择器(同辈元素选择器) 5. 补充(除自身以外的前后同辈选择器)

  5. Hadoop之Storm命令

    Hadoop之Storm命令 1.storm核心概念 stream--->一列火车 tuple--->一节车厢 数据--->乘客 spout--->始发站 bolt---> ...

  6. 在C语言源程序中的格式字符与空格等效

    #include <stdio.h> #\ i\ n\ c\ l\ u\ d\ e \ <\ s\ t\ d\ l\ i\ b\ .\ h\ > /* *预处理指令这里换行符会 ...

  7. HDU 1232 并查集/dfs

    原题: http://acm.hdu.edu.cn/showproblem.php?pid=1232 我的第一道并查集题目,刚刚学会,我是照着<啊哈算法>这本书学会的,感觉非常通俗易懂,另 ...

  8. JAVA序列化的作用

    所谓的Serializable,就是java提供的通用数据保存和读取的接口.至于从什么地方读出来和保存到哪里去都被隐藏在函数参数的背后了.这样子,任何类型只要实现了Serializable接口,就可以 ...

  9. 通过NavMeshObstacle解决NavMesh防卡

    http://www.unity蛮牛.com/thread-33383-1-1.html. 许久未曾发帖了,最近忙于换工作的问题,经常处于纠结状态,so...偶尔上蛮牛还能看到大家对我的支持,感觉还是 ...

  10. NumPy的详细教程

    原文  http://blog.csdn.net/lsjseu/article/details/20359201 主题 NumPy 先决条件 在阅读这个教程之前,你多少需要知道点python.如果你想 ...