题目大意:

给定n m (1≤N≤1e18, 2≤M≤100)

一个魔法水晶可以分裂成连续的m个普通水晶

求用水晶放慢n个位置的方案modulo 1000000007 (1e9+7)

input
4 2
output
5
 
设1为魔法水晶 0为普通水晶
n=4 m=2有5种方案 即
1111、0011、1001、1100、0000
 
得到递推公式
当 i < m 时 dp[ i ] = 1
当 i >= m 时 dp[ i ] = dp[ i-1 ] + dp[ i-m ]
n的范围是1e18 构造矩阵用矩阵快速幂
#include <bits/stdc++.h>
using namespace std;
#define LL long long
#define INF 0x3f3f3f3f
#define LLINF 0x3f3f3f3f3f3f3f3f
#define mem(i,j) memset(i,j,sizeof(i))
const int N=1e5+;
const int M=;
const int mod=1e9+; LL n,m;
struct MAT {
LL a[M][M];
MAT(){ mem(a,); }
MAT operator*(MAT p) {
MAT res;
for(int i=;i<M;i++)
for(int j=;j<M;j++)
for(int k=;k<M;k++)
res.a[i][j]=(res.a[i][j]+a[i][k]*p.a[k][j])%mod;
return res;
}
};
MAT mod_pow(MAT A,LL x) {
MAT res;
res.a[][]=;
while(x) {
if(x&) res=res*A;
A=A*A; x>>=;
} return res;
} int main()
{
while(~scanf("%I64d%I64d",&n,&m)) {
MAT A,B;
for(int i=;i<m;i++)
A.a[i][i+]=;
A.a[][]=A.a[m-][]=;
B=mod_pow(A,n);
printf("%I64d\n",B.a[][]);
} return ;
}

eduCF#60 D. Magic Gems /// 矩阵快速幂的更多相关文章

  1. Educational Codeforces Round 60 (Rated for Div. 2) - D. Magic Gems(动态规划+矩阵快速幂)

    Problem   Educational Codeforces Round 60 (Rated for Div. 2) - D. Magic Gems Time Limit: 3000 mSec P ...

  2. Educational Codeforces Round 60 (Rated for Div. 2) D. Magic Gems(矩阵快速幂)

    题目传送门 题意: 一个魔法水晶可以分裂成m个水晶,求放满n个水晶的方案数(mol1e9+7) 思路: 线性dp,dp[i]=dp[i]+dp[i-m]; 由于n到1e18,所以要用到矩阵快速幂优化 ...

  3. [递推+矩阵快速幂]Codeforces 1117D - Magic Gems

    传送门:Educational Codeforces Round 60 – D   题意: 给定N,M(n <1e18,m <= 100) 一个magic gem可以分裂成M个普通的gem ...

  4. D. Magic Gems(矩阵快速幂 || 无敌杜教)

    https://codeforces.com/contest/1117/problem/D 题解:有一些魔法宝石,魔法宝石可以分成m个普通宝石,每个宝石(包括魔法宝石)占用1个空间,让你求占用n个空间 ...

  5. poj 2888 Magic Bracelet(Polya+矩阵快速幂)

    Magic Bracelet Time Limit: 2000MS   Memory Limit: 131072K Total Submissions: 4990   Accepted: 1610 D ...

  6. Educational Codeforces Round 60 D dp + 矩阵快速幂

    https://codeforces.com/contest/1117/problem/D 题意 有n个特殊宝石(n<=1e18),每个特殊宝石可以分解成m个普通宝石(m<=100),问组 ...

  7. 【66测试20161115】【树】【DP_LIS】【SPFA】【同余最短路】【递推】【矩阵快速幂】

    还有3天,今天考试又崩了.状态还没有调整过来... 第一题:小L的二叉树 勤奋又善于思考的小L接触了信息学竞赛,开始的学习十分顺利.但是,小L对数据结构的掌握实在十分渣渣.所以,小L当时卡在了二叉树. ...

  8. HDU4887_Endless Punishment_BSGS+矩阵快速幂+哈希表

    2014多校第一题,当时几百个人交没人过,我也暴力交了几发,果然不行. 比完了去学习了BSGS才懂! 题目:http://acm.hdu.edu.cn/showproblem.php?pid=4887 ...

  9. HDU4549 M斐波那契数列 矩阵快速幂+欧拉函数+欧拉定理

    M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Total Sub ...

随机推荐

  1. Java SAX解析器

    SAX(针对XML的简单API)是基于事件为XML文档的解析器.不像DOM解析器,SAX解析器创建没有解析树. SAX是一个流接口用于XML的,这意味着使用SAX应用接收事件通知有关XML文档被处理的 ...

  2. JeeSite配置多数据源方案

    jeesite简介 JeeSite是基于多个优秀的开源项目,高度整合封装而成的高效,高性能,强安全性的 开源 Java EE快速开发平台. JeeSite本身是以Spring Framework为核心 ...

  3. MySQL修改数据库root密码方法

    方法1: 用SET PASSWORD命令 mysql -u root mysql> SET PASSWORD FOR 'root'@'localhost' = PASSWORD('newpass ...

  4. spark性能调优01-常规调优

    1.分配更多的资源 1.1 分配的资源有:executor.cup per executor.memory per executor.driver memory 1.2 如何分配:在spark-sub ...

  5. Shell 脚本的编码规范

  6. shell 脚本文件类型.sh ,变量

    1. shell脚本编程的基本过程 (1)建立shell文件,以 .sh 结尾的文件 (2)赋予shell文件执行权限,chmod 0777 文件名 (3)执行shell文件, ./ 文件名 或者ba ...

  7. auth 模块使用篇

    from django.cintrib import auth #登录模块  只要用auth模块一旦登录 就可以在项目的任意地方用request.user 拿到当前的用户对象  再通过 request ...

  8. 赋能时空云计算,阿里云数据库时空引擎Ganos上线

    随着移动互联网.位置感知技术.对地观测技术的快速发展,时空信息已从传统GIS行业渗透到大众应用及各行各业.从静态POI(兴趣点)到APP位置信息,从导航电子地图到车辆行驶轨迹,从卫星影像到三维城市建模 ...

  9. 启动php-fpm和nginx

    /usr/local/php/sbin/php-fpm #手动打补丁的启动方式/usr/local/php/sbin/php-fpm start sudo /usr/local/nginx/nginx ...

  10. Shiro学习(4)INI配置

    之前章节我们已经接触过一些INI配置规则了,如果大家使用过如spring之类的IoC/DI容器的话,Shiro提供的INI配置也是非常类似的,即可以理解为是一个IoC/DI容器,但是区别在于它从一个根 ...