题目传送门(内部题1)


输入格式

第一行两个整数$n$,$k$,代表树苗的数量和最大看书的总长度。
第二行n个整数$a_i$,代表林先森希望每棵树苗的最终高度。


输出格式

一行一个整数,代表最大可能的d值。


样例

样例输入:

3 4

1 3 5

样例输出:

3


数据范围与提示

样例解释:
第$3$天林先森砍掉了第一和第二棵树苗,第$6$天林先森砍掉了第三棵树苗。总共砍树的长度为$(3-1)+(3-3)+(6-5)=3$米。可以证明更大的d值无法满足要求。

数据范围:

对于$20%$的数据,$a_i ≤ {5×10}^5$。

另有$20%$的数据,$k≤1$。

对于所有的数据,$1≤n≤100$,$0≤k≤{10}^{11}$,$1≤a_i≤{10}^9$。


题解

看到$k$很大,$n$很小,优先选择从$n$入手。

$20\%$算法:

暗中观察数据范围,有$20%$的数据$k≤1$,怎么办呢?

这个时候分为两种情况:

  $\alpha.k=0$,那么就是说我们每一次都要赶巧了在这棵树苗长到最终高度那一天砍掉,所以答案即为所有最终高度的最大公约数。

  $\beta,k=1$,因为n比较小,所以我们每次枚举树苗,将它的最终高度+1,然后再求所有树苗的最终高度的最大公约数,取最大值即可。

期望得分:$20$分。

实际得分:$20$分。

$40\%$算法:

开始推式子,设这个天数为$d$,那么砍掉树苗i的高度即为$\left \lceil \frac{a_i}{d} \right \rceil \times d$,那么,可以列出式子:

$\sum \limits_{i=1}^{n} \left \lceil \frac{a_i}{d} \right \rceil \times d - a_i \leqslant k$

移项得:$\sum \limits_{i=1}^{n} \left \lceil \frac{a_i}{d} \right \rceil \times d \leqslant k + \sum \limits_{i=1}^{n} a_i$

惊喜发现上面不等式右边是定值,于是我们设$k + \sum \limits_{i=1}^{n} a_i$为$C$,先让$d=1$,每次让$d++$,当$d \geqslant \min a_i + k$时,不可能在有答案,所以这就是$d$的上界。

期望多得分数:$10$分。

$100\%$算法:

显然,$40\%$时间复杂度还是不允许,但是我们发现,有的d没有必要枚举。

注意对于每个$a_i$,$\left \lceil \frac{a_i}{d} \right \rceil$只有$\sqrt{a_i}$种不同的取值,因此,$\sum \limits_{i=1}^{n}\left \lceil \frac{a_i}{d} \right \rceil$只有$n \times \sqrt{a_i}$种不同的取值,利用数论分块,可以知道下一个d为$\frac{C}{\left \lceil \frac{C}{d+1} \right \rceil}$。

时间复杂度:$O( \sqrt{(\min a_i + k) \times n})$。

期望得分:$100$分。

实际得分:$100$分。


代码时刻

$20\%$算法:

#include<bits/stdc++.h>
using namespace std;
int n,k;
long long a[1000001];
long long ans;
long long gcd(long long x,long long y)
{return y==0?x:gcd(y,x%y);}
int main()
{
scanf("%d%d",&n,&k);
for(int i=1;i<=n;i++)
scanf("%lld",&a[i]);
if(!k)//特判k==0
{
ans=a[1];
for(int i=2;i<=n;i++)
ans=gcd(ans,a[i]);
printf("%lld",ans);
}
if(k==1)//特判k==1
{
long long flag=a[2];
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
{
if(i!=j)flag=gcd(flag,a[j]);
else flag=gcd(flag,a[j]+1);//将它+1
}
ans=max(ans,flag);
flag=a[1];
}
printf("%lld",ans);
}
return 0;
}

$40\%$算法(记得加上上面代码的那一段):

#include<bits/stdc++.h>
using namespace std;
int n;
long long a[100001];
long long sigma;
long long ans;
int main()
{
scanf("%d%lld",&n,&sigma);
for(int i=1;i<=n;i++)
{
scanf("%lld",&a[i]);
sigma+=a[i];
}
for(long long d=1;d<=sigma;d++)
{
long long flag=0;
for(int i=1;i<=n;i++)
{
if(a[i]%d)flag+=(a[i]/d+1)*d;
else flag+=a[i];
}
if(flag<=sigma)ans=d;
}
printf("%lld",ans);
return 0;
}

$100\%$算法:

#include<bits/stdc++.h>
using namespace std;
int n;
long long k;
long long a[1000001];
long long sigma,maxn;
long long ans;
int main()
{
scanf("%d%lld",&n,&k);
sigma=k;
for(int i=1;i<=n;i++)
{
scanf("%lld",&a[i]);
sigma+=a[i];
maxn=max(maxn,a[i]);
}
maxn+=k;
long long d=1;
while(1)
{
long long flag=0;
for(int i=1;i<=n;i++)
{
if(a[i]%d)flag+=(a[i]/d+1)*d;
else flag+=a[i];
}
if(flag<=sigma)ans=d;
if(maxn<=d)break;//上界
d=sigma/(sigma/(d+1));//更新d
}
cout<<ans<<endl;
return 0;
}

rp++

[CSP-S模拟测试]:砍树(数学+模拟)的更多相关文章

  1. [CSP-S模拟测试]:最大值(数学+线段树)

    题目背景 $Maxtir$最喜欢最大值. 题目传送门(内部题128) 输入格式 第$1$行输入四个正整数$n,m,q$. 第$2$至$n+1$行中,第$i+1$行输入魔法晶石$i$的三种属性$(x_i ...

  2. [CSP-S模拟测试]:Equation(数学+树状数组)

    题目描述 有一棵$n$个点的以$1$为根的树,以及$n$个整数变量$x_i$.树上$i$的父亲是$f_i$,每条边$(i,f_i)$有一个权值$w_i$,表示一个方程$x_i+x_{f_i}=w_i$ ...

  3. [CSP-S模拟测试]:Race(数学+Trie树)

    题目描述 一年一度的运动会开始了.有$N$个选手参赛,第$i$个选手有一个能力值(保证$A[i]$两两不同),比赛一共进行了天.在第$j$天($0\leqslant j\leqslant 2^{m-1 ...

  4. [CSP-S模拟测试]:旅行(数学+线段树)

    题目传送门(内部题12) 输入格式 第一行,一个整数$n$,代表树的点数.第二行,$n$个整数,第$i$个整数是$B_i$,描述排列$B$.接下来$n−1$行,每行两个整数$u,v$,描述一条树边$( ...

  5. noip 2018.10.14 模拟赛 砍树

    数学问题... 根据题意,有: 移项,整理,得: 记 于是 那么 可以看到,最多只会有2*个取值(显而易见) 于是对应的,可能产生效果的d也只会有个,于是我们把他们找出来,扔进一个数组里然后排序,去重 ...

  6. [CSP-S模拟测试]:超级树(DP)

    题目传送门(内部题5) 输入格式 一行两个整数$k$.$mod$,意义见上. 输出格式 一行一个整数,代表答案. 样例 样例输入1: 2 100 样例输出1: 样例输入2: 3 1000 样例输出2: ...

  7. [CSP-S模拟测试]:不等式(数学)

    题目描述 小$z$热衷于数学.今天数学课的内容是解不等式:$L\leqslant S\times x\leqslant R$.小$z$心想这也太简单了,不禁陷入了深深的思考:假如已知$L,R,S,M$ ...

  8. [CSP-S模拟测试]:A(数学)

    题目传送门(内部题44) 输入格式 一行四个整数,分别表示$S,T,a,b$. 输出格式 输出最小步数,数据保证有解. 样例 样例输入: 10 28 4 2 样例输出: 数据范围与提示 样例解释: 先 ...

  9. [CSP-S模拟测试]:装饰(数学)

    题目传送门(内部题147) 输入格式 每个测试点第一行一个正整数$T$,表示该测试点内的数据组数. 接下来$T$行,每行三个非负整数$a,b,c$,含义如题目中所示. 输出格式 对每组数据输出一行一个 ...

随机推荐

  1. springboot + mybaits + oracle 项目

    1.pom设置 <?xml version="1.0" encoding="UTF-8"?> <project xmlns="htt ...

  2. php php-fpm、nginx和js

    1 php-fpm是什么 php-fpm是php fastCGI process manager的缩写.它是php的进程管理器,对每个请求的处理都是一个进程. php-fpm管理了一个进程池,假如进程 ...

  3. [转帖]解决K8S 安装只有 一直提示:kernel:unregister_netdevice: waiting for eth0 to become free. Usage count = 1 的方法

    Centos7 终端报Message from syslogd :kernel:unregister_netdevice https://www.jianshu.com/p/96d7e2cd9e99 ...

  4. ubutu16.04编译安装apache

    // 安装编译器 sudo apt-get install build-essential // 下载所需依赖及apache2源码包 wget --no-check-certificate https ...

  5. 有序无序Ul->Li Ol->Li菜单,默认点击当前弹出下拉,再次点击收起下拉菜单(变形2 ---修饰)

    从上面可以看出,两个问题,第一:下拉出现的太快太突然,第二:再点击下一个下拉菜单的时候,上一个不会闭合,针对这两个问题,接下来会一 一解决. 解决下拉太快: js中有个jquery效果,有一个效果是j ...

  6. 2019 NCTF Re WP

    0x01 debug 测试文件:https://www.lanzous.com/i7kr2ta 1.Linux运行环境 在Linux上运行linux_server64文件 2.IDA配置 __int6 ...

  7. oracle PL/SQL编程基础知识

    在oracle中使用pl/sql来扩展SQL的功能,使得SQL能够更加的灵活,功能更加强大,效率更高.pl/sql让sql也能执行判断,循环等操作.主要记录一下pl/sql的基本语法和基本条件判断语句 ...

  8. windows安装nginx部署

    转自:https://www.jb51.net/article/47066.htm 一.下载安装Nginx(本文环境为windows xp 32bit环境) 解压nginx-1.0.11.zip,进入 ...

  9. python socket--TCP解决粘包的方法

    1.为什么会出现粘包?? 让我们基于tcp先制作一个远程执行命令的程序(1:执行错误命令 2:执行ls 3:执行ifconfig) 注意注意注意: res=subprocess.Popen(cmd.d ...

  10. python基础练习题3

    01:有1,2,3,4个数字,能组成多少个互不相同且无重复的三位数,都是多少思路:可填写在百位,十位,个位的数字都是1,2,3,4.组成所有的排列后再去掉不满足条件的排列 list =[,,,] li ...