BZOJ 3456 城市规划 (组合计数、DP、FFT)
题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=3456
著名的多项式练习题,做法也很多,终于切掉了纪念
首先求一波递推式: 令\(F(n)\)为\(n\)个点的有标号无向连通图的个数,则考虑补集转化为有标号无向不连通图的个数,然后枚举\(1\)号点所在联通块的大小: $$F(n)=2^{n\choose 2}-\sum^{n-1}_{i=1} {n-1\choose i-1} F(i)2^{n-i\choose 2}$$
这样可以做到\(O(n^2)\), 后面就该大佬们各显神通了,我在这里整理一下四种做法:
做法一
直接使用分治NTT优化,时间复杂度\(O(n\log^2n)\)。但我不会分治NTT,所以不具体说了。
做法二
\frac{F(n)}{(n-1)!}=\frac{2^{n\choose 2}}{(n-1)!}-\sum^{n-1}_{i=1} \frac{F(i)}{(i-1)!}\frac{2^{n-i\choose 2}}{(n-i)!}$$移项可得$$\frac{2^{n\choose 2}}{(n-1)!}=\sum^{n}_{i=1} \frac{F(i)}{(i-1)!}\frac{2^{n-i\choose 2}}{(n-i)!}\]
令\(A(x)=\sum_{n>0}\frac{F(n)}{(n-1)!}, G(x)=\sum_{n\ge 0}\frac{2^{n\choose 2}}{n!}, H(x)=\sum_{n>0}\frac{2^{n\choose 2}}{(n-1)!}\), 则有$$F(x)G(x)=H(x)\ F(x)=H(x)G(x)^{-1}$$
多项式求逆即可。
时间复杂度\(O(n\log n)\).
这应该是代码复杂度和运行效率上最好的一种做法,但是做法三和做法四也有一定的启发意义。
做法三
设\(G(n)=2^{n\choose 2}\)表示\(n\)个点有标号无向图的个数。设\(F(x),G(x)\)分别为\(F(n),G(n)\)的指数生成函数(EGF).
由于一个有标号无向图由若干个彼此之间无顺序的联通块组成,因此其指数生成函数\(G(x)=\sum_{n\ge 1}\frac{F(x)^n}{n!}\).
即\(G(x)=e^{F(x)}\), \(F(x)=\ln G(x)\). 多项式\(\ln\)即可。
时间复杂度\(O(n\log n)\).
做法四
(这个做法是我自己想的,有错敬请指出)(这种做法其实是用另一种方式推导做法三)
感谢_rqy大爷博客里的生成函数简介。
仿照求Bell数的EGF方法,进行以下推导: $$\frac{F(n)}{n!}=\frac{G(n)}{n!}-\sum^{n-1}{i=1} \frac{F(i)}{n(i-1)!}\frac{G(n-i)}{(n-i)!}\ \frac{G(n)}{n!}=\frac{F(n)}{n!}+\frac{1}{n}\sum^{n-1}{i=1}\frac{iF(i)}{i!}\frac{G(n-i)}{(n-i)!}$$
这里我们发现\(\frac{iF(i)}{i!}\)就是\([x^{i-1}]F'(x)\), 于是上式可以改写为$$[xn]G(x)=[xn]F(x)+\frac{1}{n}\sum{n-1}_{i=1}[x{i-1}]F'(x)\times [x^{n-i}]G(x)\ =\frac{1}{n}(n[xn]F(x)+\sum{n-1}_{i=1}[x^{i-1}]F'(x)\times [x^{n-i}]G(x))\ =\frac{1}{n}\sum{n}_{i=1}[x{i-1}]F'(x)\times [x^{n-i}]G(x)\ G(x)=\int^x_0 F'(x)G(x)\text{d}x\ \frac{G'(x)}{G(x)}=F'(x)\ \ln G(x)=F(x)$$.
一定要注意求和边界! 我推式子的时候没注意求和上界是\(n\)还是\((n-1)\)的问题结果一直推出来\(G(x)=F(x)+\int^x_0 F'(x)G(x)\text{d}x\)查了一小时……
代码
做法二
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cassert>
#include<iostream>
#define llong long long
using namespace std;
inline int read()
{
int x=0; bool f=1; char c=getchar();
for(;!isdigit(c);c=getchar()) if(c=='-') f=0;
for(; isdigit(c);c=getchar()) x=(x<<3)+(x<<1)+(c^'0');
if(f) return x;
return -x;
}
const int N = 1<<19;
const int LGN = 19;
const int P = 1004535809;
const int G = 3;
llong fact[N+3],finv[N+3];
llong quickpow(llong x,llong y)
{
llong cur = x,ret = 1ll;
for(int i=0; y; i++)
{
if(y&(1ll<<i)) {y-=(1ll<<i); ret = ret*cur%P;}
cur = cur*cur%P;
}
return ret;
}
llong mulinv(llong x) {quickpow(x,P-2);}
namespace Polynomial
{
llong tmp1[N+3],tmp2[N+3],tmp3[N+3],tmp4[N+3],tmp5[N+3],tmp6[N+3];
int fftid[N+3];
int getdgr(int n)
{
int ret = 1; while(ret<=n) ret<<=1;
return ret;
}
void init_fftid(int dgr)
{
int len = 0; for(int i=1; i<=LGN; i++) {if((1<<i)==dgr) {len = i; break;}}
for(int i=1; i<dgr; i++) fftid[i] = (fftid[i>>1]>>1)|((i&1)<<(len-1));
}
void ntt(int dgr,int coe,llong poly[],llong ret[])
{
init_fftid(dgr);
if(poly==ret) {for(int i=0; i<dgr; i++) {if(i<fftid[i]) swap(ret[i],ret[fftid[i]]);}}
else {for(int i=0; i<dgr; i++) ret[i] = poly[fftid[i]];}
for(int i=1; i<=(dgr>>1); i<<=1)
{
llong tmp = quickpow(G,(P-1)/(i<<1));
if(coe==-1) tmp = mulinv(tmp);
for(int j=0; j<dgr; j+=(i<<1))
{
llong expn = 1ll;
for(int k=0; k<i; k++)
{
llong x = ret[j+k],y = ret[i+j+k]*expn%P;
ret[j+k] = (x+y)%P;
ret[j+i+k] = (x-y+P)%P;
expn = expn*tmp%P;
}
}
}
if(coe==-1)
{
llong tmp = mulinv(dgr);
for(int i=0; i<dgr; i++) ret[i] = ret[i]*tmp%P;
}
}
void polymul(int dgr,llong poly1[],llong poly2[],llong ret[])
{
ntt(dgr<<1,1,poly1,tmp1); ntt(dgr<<1,1,poly2,tmp2);
for(int i=0; i<(dgr<<1); i++) tmp2[i] = tmp1[i]*tmp2[i]%P;
ntt(dgr<<1,-1,tmp2,ret);
}
void polyinv(int dgr,llong poly[],llong ret[])
{
for(int i=0; i<dgr; i++) ret[i] = tmp1[i] = 0ll;
ret[0] = mulinv(poly[0]); tmp1[0] = poly[0];
for(int i=1; i<=(dgr>>1); i<<=1)
{
for(int j=i; j<(i<<1); j++) tmp1[j] = poly[j];
ntt((i<<2),1,ret,tmp2); ntt((i<<2),1,tmp1,tmp3);
for(int j=0; j<(i<<2); j++) tmp2[j] = tmp2[j]*tmp2[j]%P*tmp3[j]%P;
ntt((i<<2),-1,tmp2,tmp3);
for(int j=0; j<(i<<1); j++) ret[j] = (2ll*ret[j]-tmp3[j]+P)%P;
}
}
}
llong f[N+3],g[N+3],h[N+3],ginv[N+3];
int n;
int main()
{
fact[0] = 1ll; for(int i=1; i<=N; i++) fact[i] = fact[i-1]*i%P;
finv[N] = quickpow(fact[N],P-2); for(int i=N-1; i>=0; i--) finv[i] = finv[i+1]*(i+1)%P;
scanf("%d",&n); int dgr = Polynomial::getdgr(n);
for(int i=0; i<=n; i++) {g[i] = quickpow(2ll,i*(i-1ll)/2ll)*finv[i]%P;}
for(int i=1; i<=n; i++) {h[i] = quickpow(2ll,i*(i-1ll)/2ll)*finv[i-1]%P;}
// printf("g: "); for(int i=0; i<dgr; i++) printf("%lld ",g[i]); puts("");
// printf("h: "); for(int i=0; i<dgr; i++) printf("%lld ",h[i]); puts("");
Polynomial::polyinv(dgr,g,ginv);
// printf("ginv: "); for(int i=0; i<dgr; i++) printf("%lld ",ginv[i]); puts("");
Polynomial::polymul(dgr,ginv,h,f);
printf("%lld\n",f[n]*fact[n-1]%P);
return 0;
}
生成函数这东西真的是有趣!!!
BZOJ 3456 城市规划 (组合计数、DP、FFT)的更多相关文章
- [BZOJ 3456]城市规划(cdq分治+FFT)
[BZOJ 3456]城市规划(cdq分治+FFT) 题面 求有标号n个点无向连通图数目. 分析 设\(f(i)\)表示\(i\)个点组成的无向连通图数量,\(g(i)\)表示\(i\)个点的图的数量 ...
- [ZJOI2010]排列计数 (组合计数/dp)
[ZJOI2010]排列计数 题目描述 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有 ...
- [BZOJ 4332] [JSOI2012]分零食(DP+FFT)
[BZOJ 4332] [JSOI2012]分零食(DP+FFT) 题面 同学们依次排成了一列,其中有A位小朋友,有三个共同的欢乐系数O,S和U.如果有一位小朋友得到了x个糖果,那么她的欢乐程度就是\ ...
- BZOJ 3456: 城市规划 [多项式求逆元 组合数学 | 生成函数 多项式求ln]
3456: 城市规划 题意:n个点组成的无向连通图个数 以前做过,今天复习一下 令\(f[n]\)为n个点的无向连通图个数 n个点的完全图个数为\(2^{\binom{n}{2}}\) 和Bell数的 ...
- bzoj 1004 Cards 组合计数
这道题考察的是组合计数(用Burnside,当然也可以认为是Polya的变形,毕竟Polya是Burnside推导出来的). 这一类问题的本质是计算置换群(A,P)中不动点个数!(所谓不动点,是一个二 ...
- BZOJ1079 [SCOI2008]着色方案[组合计数DP]
$有a_{1}个1,a_{2}个2,...,a_{n}个n(n<=15,a_{n}<=5),求排成一列相邻位不相同的方案数.$ 关于这题的教训记录: 学会对于复杂的影响分开计,善于发现整体 ...
- bzoj 3456 城市规划 —— 分治FFT / 多项式求逆 / 指数型生成函数(多项式求ln)
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3456 首先考虑DP做法,正难则反,考虑所有情况减去不连通的情况: 而不连通的情况就是那个经典 ...
- BZOJ 3456: 城市规划 与 多项式求逆算法介绍(多项式求逆, dp)
题面 求有 \(n\) 个点的无向有标号连通图个数 . \((1 \le n \le 1.3 * 10^5)\) 题解 首先考虑 dp ... 直接算可行的方案数 , 容易算重复 . 我们用总方案数减 ...
- bzoj 3456 城市规划——分治FFT / 多项式求逆 / 多项式求ln
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3456 分治FFT: 设 dp[ i ] 表示 i 个点时连通的方案数. 考虑算补集:连通的方 ...
随机推荐
- 01:gitbook使用
1.1 gitbook介绍 1.gitbook说明 GitBook 使用的markdown语法 在此基础上做了一些 写作便利性的加强 Markdown 是一种轻量级的「标记语言」,优点在于 专注你的文 ...
- VUE(下)
VUE(下) VUE指令 表单指令 数据的双向指令 v-model = "变量" model绑定的变量,控制的是表单元素的value值 普通表单元素用v-model直接绑定控制va ...
- 附录2:CEL文件格式
一.版本3 描述 version 版本号,设为3 Cols 列数 Rows 行数 TotalX 和Cols一样 TotalY 和Rows一样 OffsetX 无用,设置为0 OffsetY 无用,设置 ...
- java.util.MissingFormatArgumentException: Format specifier '%s'
java.util.MissingFormatArgumentException: Format specifier '%s' at java.util.Formatter.format(Format ...
- C++ 对象的构造
在类里面成员函数的初始值是多少了?(取决于创建对象的位置,是在堆.栈.还是在静态存储区中创建.) 例如: #include <stdio.h> class Test { private: ...
- java构造方法的注意事项总结
构造方法细节总结~~~~~ 1:首先要了解为什么需要构造方法,,,类中有太多的属性,每次给属性赋值时非常麻烦:编码量大,无法重用给属性赋值的代码.. 2:什么是构造方法呢? 构造方法负责初始化类中的实 ...
- springboot2整合zookeeper集成curator
步骤: 1- pom.xml <dependency> <groupId>org.apache.curator</groupId> <artifactId&g ...
- c# 转换Image为Icon
/// <summary> /// 转换Image为Icon /// </summary> /// <param name="image">要转 ...
- git 基本命令操作
配置 Git 的相关参数. Git 一共有3个配置文件: 1. 仓库级的配置文件:在仓库的 .git/.gitconfig,该配置文件只对所在的仓库有效.2. 全局配置文件:Mac 系统在 ~/.gi ...
- 线程池ThreadPool
在面向对象编程中,经常会面对创建对象和销毁对象的情况,如果不正确处理的话,在短时间内创建大量对象然后执行简单处理之后又要销毁这些刚刚建立的对象,这是一个非常消耗性能的低效行为,所以很多面向对象语言中在 ...