CodeForces451E Devu and Flowers
问题分析
没有想到母函数的做法……
其实直接看题思路挺简单的。发现如果每种花都有无限多的话,问题变得十分简单,答案就是\(s+n-1\choose n - 1\)。然后发现\(n\)只有\(20\),于是大力容斥一波就完事了。
参考代码
#include <cstdio>
const long long Max_n = 30;
const long long Mod = 1000000007;
long long n, s, f[ Max_n ];
void Exgcd( long long a, long long b, long long & x, long long & y ) {
if( b == 0LL ) { x = 1LL; y = 0LL; return; }
Exgcd( b, a % b, y, x );
y -= a / b * x;
return;
}
long long Inv( long long a ) {
long long x, y;
Exgcd( a, Mod, x, y );
if( x < 0 ) x += Mod;
return x;
}
long long C( long long n, long long m ) {
long long Ans = 1;
for( long long i = 1; i <= m; ++i ) Ans = Ans * ( ( n - i + 1 ) % Mod ) % Mod;
for( long long i = 1; i <= m; ++i ) Ans = Ans * Inv( i ) % Mod;
return Ans;
}
int main() {
scanf( "%lld%lld", &n, &s );
for( long long i = 1; i <= n; ++i ) scanf( "%lld", &f[ i ] );
long long Ans = 0;
for( long long i = 0; i < 1 << n; ++i ) {
long long t, Cnt = 0, Pos = s;
for( t = i; t; t >>= 1 ) if( t & 1 ) ++Cnt;
for( long long j = 1, t = i; t; t >>= 1, ++j ) if( t & 1 ) Pos -= f[ j ] + 1;
if( Pos < 0 ) continue;
Ans += ( Cnt & 1 ) ? -C( Pos + n - 1, n - 1 ) : C( Pos + n - 1, n - 1 );
Ans = ( Ans + Mod ) % Mod;
}
printf( "%lld\n", Ans );
return 0;
}
CodeForces451E Devu and Flowers的更多相关文章
- CF451E Devu and Flowers (隔板法 容斥原理 Lucas定理 求逆元)
Codeforces Round #258 (Div. 2) Devu and Flowers E. Devu and Flowers time limit per test 4 seconds me ...
- Codeforces 451E Devu and Flowers(容斥原理)
题目链接:Codeforces 451E Devu and Flowers 题目大意:有n个花坛.要选s支花,每一个花坛有f[i]支花.同一个花坛的花颜色同样,不同花坛的花颜色不同,问说能够有多少种组 ...
- E. Devu and Flowers
E. Devu and Flowers time limit per test 4 seconds memory limit per test 256 megabytes input standard ...
- Codeforces Round #258 (Div. 2) E. Devu and Flowers 容斥
E. Devu and Flowers 题目连接: http://codeforces.com/contest/451/problem/E Description Devu wants to deco ...
- CF451E Devu and Flowers 解题报告
CF451E Devu and Flowers 题意: \(Devu\)有\(N\)个盒子,第\(i\)个盒子中有\(c_i\)枝花.同一个盒子内的花颜色相同,不同盒子的花颜色不同.\(Devu\)要 ...
- CF451E Devu and Flowers(容斥)
CF451E Devu and Flowers(容斥) 题目大意 \(n\)种花每种\(f_i\)个,求选出\(s\)朵花的方案.不一定每种花都要选到. \(n\le 20\) 解法 利用可重组合的公 ...
- BZOJ1101 [POI2007]Zap 和 CF451E Devu and Flowers
Zap FGD正在破解一段密码,他需要回答很多类似的问题:对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b,并且gcd(x,y)=d.作为FGD的同学,FGD希望得到 ...
- CodeForces-451E:Devu and Flowers (母函数+组合数+Lucas定理)
Devu wants to decorate his garden with flowers. He has purchased n boxes, where the i-th box contain ...
- Codeforces 451 E Devu and Flowers
Discription Devu wants to decorate his garden with flowers. He has purchased n boxes, where the i-th ...
随机推荐
- C++序列容器之 vector常见用法总结
一.关于vector 本文默认读者具有一定的c++基础,故大致叙述,但保证代码正确. vector是一个动态的序列容器,相当于一个size可变的数组. 相比于数组,vector会消耗更多的内存以有效的 ...
- Manacher模版
现在讲的也是一种处理字符串的方法,叫做Manacher,有点像“马拉车” 1179: [视频][Manacher]最长回文子串 时间限制: 1 Sec 内存限制: 128 MB提交: 209 解决 ...
- 求问:numpy里面索引时,采用整型数组和整型列表的区别!
- RabbitMQ 示例-生产者-消费者-direct-topic-fanout
这是生产者和消费者2个项目, 包含 direct,topic,fanout模式下的消费,springboot + rabbitmq 代码地址:https://github.com/duende99/R ...
- 前端之BOM,DOM
前戏 到目前为止,我们已经学过了JavaScript的一些简单的语法.但是这些简单的语法,并没有和浏览器有任何交互. 也就是我们还不能制作一些我们经常看到的网页的一些交互,我们需要继续学习BOM和DO ...
- Souvenirs CodeForces - 765F (好题)
大意: 给定序列$a$, $m$个询问$[l,r]$, 回答$[l,r]$内最接近的两个数的差. 考虑离线, 枚举右端点, 每个点维护左端点的贡献, 对于新添一个点$a_r$, 只考虑左侧点比$a_r ...
- Echarts饼图将数据显示在 legend 旁边
不多废话,笔记如下 var myEcharts = echarts.init(document.getElementById('doughnut')); option = { tooltip: { t ...
- Angular获取dom元素,以及父子组建之间相互传值
1.使用原生js代码获取dom元素 在ts文件中有一个ngOnInit()的方法,这个方式是指在模块加载完毕之后并不是dom加载完毕,也就是说如果你的dom元素中使用的angular的指令,然后想在这 ...
- springboot(十九)-线程池的使用
我们常用ThreadPoolExecutor提供的线程池服务,springboot框架提供了@Async注解,帮助我们更方便的将业务逻辑提交到线程池中异步执行. 话不多说,编码开始: 1.创建spri ...
- H5的video标签在网页上播放MP4视频时只有声音没有画面
最近做一个项目时,发现mp4文件播放时没有图像,只有声音,代码检查了N次,都没有问题,就算是直接使用网上的实例代码,也只能播放实例视频,mp4文件绝对路径,相对路径也都试了,还是不能播放我的mp4. ...