NumPy 统计函数

NumPy 提供了很多统计函数,用于从数组中查找最小元素,最大元素,百分位标准差和方差等。 函数说明如下:(沿哪条轴执行,就是是最后结果的形式)

1、numpy.amin() 和 numpy.amax()

numpy.amin() 用于计算数组中的元素沿指定轴的最小值。

numpy.amax() 用于计算数组中的元素沿指定轴的最大值。

 import numpy as np
a = np.array([[3, 7, 5], [8, 4, 3], [2, 4, 9]])
print('我们的数组是:')
print(a)
print('调用 amin() 函数:')
print(np.amin(a, 1))
print('再次调用 amin() 函数:')
print(np.amin(a, 0))
print('调用 amax() 函数:')
print(np.amax(a))
print('再次调用 amax() 函数:')
print(np.amax(a, axis=0))

执行结果:

我们的数组是:
[[3 7 5]
[8 4 3]
[2 4 9]]
调用 amin() 函数:
[3 3 2]
再次调用 amin() 函数:
[2 4 3]
调用 amax() 函数:
9
再次调用 amax() 函数:
[8 7 9]

2、numpy.ptp()

numpy.ptp()函数计算数组中元素最大值与最小值的差(最大值 - 最小值)

import numpy as np
a = np.array([[3, 7, 5], [8, 4, 3], [2, 4, 9]])
print('我们的数组是:')
print(a)
print('调用 ptp() 函数:')
print(np.ptp(a))
print('沿轴 1 调用 ptp() 函数:')
print(np.ptp(a, axis=1))
print('沿轴 0 调用 ptp() 函数:')
print(np.ptp(a, axis=0))

执行结果:

我们的数组是:
[[3 7 5]
[8 4 3]
[2 4 9]] 调用 ptp() 函数:
7 沿轴 1 调用 ptp() 函数:
[4 5 7] 沿轴 0 调用 ptp() 函数:
[6 3 6]

3、numpy.percentile()

百分位数是统计中使用的度量,表示小于这个值的观察值的百分比。 函数numpy.percentile()接受以下参数。

numpy.percentile(a, q, axis)

参数说明:

  • a: 输入数组
  • q: 要计算的百分位数,在 0 ~ 100 之间
  • axis: 沿着它计算百分位数的轴

首先明确百分位数:

第 p 个百分位数是这样一个值,它使得至少有 p% 的数据项小于或等于这个值,且至少有 (100-p)% 的数据项大于或等于这个值。

举个例子:高等院校的入学考试成绩经常以百分位数的形式报告。比如,假设某个考生在入学考试中的语文部分的原始分数为 54 分。相对于参加同一考试的其他学生来说,他的成绩如何并不容易知道。但是如果原始分数54分恰好对应的是第70百分位数,我们就能知道大约70%的学生的考分比他低,而约30%的学生考分比他高。

这里的 p = 70。

 import numpy as np
a = np.array([[10, 7, 4], [3, 2, 1]])
print('我们的数组是:')
print(a)
print('调用 percentile() 函数:')
# 50% 的分位数,就是 a 里排序之后的中位数
print(np.percentile(a, 50))
# axis 为 0,在纵列上求
print(np.percentile(a, 50, axis=0))
# axis 为 1,在横行上求
print(np.percentile(a, 50, axis=1))
# 保持维度不变
print(np.percentile(a, 50, axis=1, keepdims=True))

执行结果:

我们的数组是:
[[10 7 4]
[ 3 2 1]]
调用 percentile() 函数:
3.5
[6.5 4.5 2.5]
[7. 2.]
[[7.]
[2.]]

4、numpy.median()

numpy.median() 函数用于计算数组 a 中元素的中位数(中值)

 import numpy as np
a = np.array([[30, 65, 70], [80, 95, 10], [50, 90, 60]])
print('我们的数组是:')
print(a)
print('调用 median() 函数:')
print(np.median(a))
print('沿轴 0 调用 median() 函数:')
print(np.median(a, axis=0))
print('沿轴 1 调用 median() 函数:')
print(np.median(a, axis=1))

执行结果:

我们的数组是:
[[30 65 70]
[80 95 10]
[50 90 60]]
调用 median() 函数:
65.0
沿轴 0 调用 median() 函数:
[50. 90. 60.]
沿轴 1 调用 median() 函数:
[65. 80. 60.]

5、numpy.mean()

numpy.mean() 函数返回数组中元素的算术平均值。 如果提供了轴,则沿其计算。

算术平均值是沿轴的元素的总和除以元素的数量。

 import numpy as np
a = np.array([[1,2,3],[3,4,5],[4,5,6]])
print ('我们的数组是:')
print (a)
print ('调用 mean() 函数:')
print (np.mean(a))
print ('沿轴 0 调用 mean() 函数:')
print (np.mean(a, axis = 0))
print ('沿轴 1 调用 mean() 函数:')
print (np.mean(a, axis = 1))

执行结果:

我们的数组是:
[[1 2 3]
[3 4 5]
[4 5 6]] 调用 mean() 函数:
3.6666666666666665 沿轴 0 调用 mean() 函数:
[2.66666667 3.66666667 4.66666667] 沿轴 1 调用 mean() 函数:
[2. 4. 5.]

6、numpy.average()

numpy.average() 函数根据在另一个数组中给出的各自的权重计算数组中元素的加权平均值。

该函数可以接受一个轴参数。 如果没有指定轴,则数组会被展开。

加权平均值即将各数值乘以相应的权数,然后加总求和得到总体值,再除以总的单位数。

考虑数组[1,2,3,4]和相应的权重[4,3,2,1],通过将相应元素的乘积相加,并将和除以权重的和,来计算加权平均值。

加权平均值 = (1*4+2*3+3*2+4*1)/(4+3+2+1)
 import numpy as np
a = np.array([1, 2, 3, 4])
print('我们的数组是:')
print(a)
print('调用 average() 函数:')
print(np.average(a))
# 不指定权重时相当于 mean 函数
wts = np.array([4, 3, 2, 1])
print('再次调用 average() 函数:')
print(np.average(a, weights=wts))
# 如果 returned 参数设为 true,则返回权重的和
print('权重的和:')
print(np.average([1, 2, 3, 4], weights=[4, 3, 2, 1], returned=True))

执行结果:

我们的数组是:
[1 2 3 4]
调用 average() 函数:
2.5
再次调用 average() 函数:
2.0
权重的和:
(2.0, 10.0)

在多维数组中,可以指定用于计算的轴。

 import numpy as np
a = np.arange(6).reshape(3, 2)
print('我们的数组是:')
print(a)
print('修改后的数组:')
wt = np.array([3, 5])
print(np.average(a, axis=1, weights=wt))
print('修改后的数组:')
print(np.average(a, axis=1, weights=wt, returned=True))

执行结果:

 我们的数组是:
[[0 1]
[2 3]
[4 5]]
修改后的数组:
[0.625 2.625 4.625]
修改后的数组:
(array([0.625, 2.625, 4.625]), array([8., 8., 8.]))

7、标准差

标准差是一组数据平均值分散程度的一种度量。

标准差是方差的算术平方根。

标准差公式如下:

std = sqrt(mean((x - x.mean())**2))

如果数组是 [1,2,3,4],则其平均值为 2.5。 因此,差的平方是 [2.25,0.25,0.25,2.25],并且其平均值的平方根除以 4,即 sqrt(5/4) ,结果为 1.1180339887498949。

 import numpy as np 

 print (np.std([1,2,3,4]))

执行结果:

1.1180339887498949

8、方差

统计中的方差(样本方差)是每个样本值与全体样本值的平均数之差的平方值的平均数,即 mean((x - x.mean())** 2)。

换句话说,标准差是方差的平方根。

 import numpy as np

 print (np.var([1,2,3,4]))

执行结果:

1.25

14、numpy——统计函数的更多相关文章

  1. NumPy——统计函数

    引入模块import numpy as np 1.numpy.sum(a, axis=None)/a.sum(axis=None) 根据给定轴axis计算数组a相关元素之和,axis整数或元组,不指定 ...

  2. NumPy 统计函数

    NumPy 统计函数 NumPy 提供了很多统计函数,用于从数组中查找最小元素,最大元素,百分位标准差和方差等. 函数说明如下: numpy.amin() 和 numpy.amax() numpy.a ...

  3. NumPy统计函数

    NumPy - 统计函数 NumPy 有很多有用的统计函数,用于从数组中给定的元素中查找最小,最大,百分标准差和方差等. 函数说明如下: numpy.amin() 和 numpy.amax() 这些函 ...

  4. Lesson17——NumPy 统计函数

    NumPy 教程目录 1 NumPy 统计函数 NumPy 提供了很多统计函数,用于从数组中查找最小元素,最大元素,百分位标准差和方差等. 函数说明如下 1.1 统计 method descripti ...

  5. 吴裕雄--天生自然Numpy库学习笔记:NumPy 统计函数

    NumPy 提供了很多统计函数,用于从数组中查找最小元素,最大元素,百分位标准差和方差等. numpy.amin() 用于计算数组中的元素沿指定轴的最小值. numpy.amax() 用于计算数组中的 ...

  6. 数据分析 大数据之路 四 numpy 2

    NumPy 数学函数 NumPy 提供了标准的三角函数:sin().cos().tan(import numpy as np a = np.array([0,30,45,60,90])print (' ...

  7. numpy学习笔记(三)

    (1)numpy的位操作 序号         操作及描述 1.      bitwise_and 对数组元素执行位与操作 2.      bitwise_or 对数组元素执行位或操作 3.      ...

  8. Python之Numpy详细教程

    NumPy - 简介 NumPy 是一个 Python 包. 它代表 “Numeric Python”. 它是一个由多维数组对象和用于处理数组的例程集合组成的库. Numeric,即 NumPy 的前 ...

  9. NumPy 基于数值区间创建数组

    来源:Python Numpy 教程 章节 Numpy 介绍 Numpy 安装 NumPy ndarray NumPy 数据类型 NumPy 数组创建 NumPy 基于已有数据创建数组 NumPy 基 ...

随机推荐

  1. 关于使用itext转Html为pdf添加css样式的问题

    使用的jar文件 xmlworker-5.5.11.jar itextpdf-5.5.11.jar 下载地址:https://pan.baidu.com/s/1i5AIBvZ 以下为测试代码 pack ...

  2. pandas数据读取(DataFrame & Series)

    1.pandas数据的读取 pandas需要先读取表格类型的数据,然后进行分析 数据说明 说明 pandas读取方法 csv.tsv.txt 用逗号分割.tab分割的纯文本文件 pd.read_csv ...

  3. Vue 组件间的传值(通讯)

    组件之间的通讯分为三种 父给子传 子给父传 兄弟组件之间的通讯 1 父组件给子组件传值 子组件嵌套在父组件内部,父组件给子组件传递一个标识,在子组件内部用props接收,子组件在模板里可以通过{{}} ...

  4. mybaties数据源配置类型(POOLED、JNDI、UNPOOLED)

    dataSource的类型可以配置成其内置类型之一,如UNPOOLED.POOLED.JNDI. 如果将类型设置成UNPOOLED,mybaties会为每一个数据库操作创建一个新的连接,并关闭它.该方 ...

  5. 全文检索 使用最新lucene3.0.3+最新盘古分词 pangu2.4 .net 实例

    开发环境 vs2015 winform 程序 1 首先需要下载对应的DLL 文章后面统一提供程序下载地址 里面都有 2 配置pangu的参数 也可以不配置 采用默认的即可 3 创建索引,将索引存放到本 ...

  6. luogu P1020 导弹拦截 x

    首先上题目~ luogu P1020 导弹拦截 题目描述 某国为了防御敌国的导弹袭击,发展出一种导弹拦截系统.但是这种导弹拦截系统有一个缺陷:虽然它的第一发炮弹能够到达任意的高度,但是以后每一发炮弹都 ...

  7. C#[WinForm]实现自动更新

    C#[WinForm]实现自动更新 winform程序相对web程序而言,功能更强大,编程更方便,但软件更新却相当麻烦,要到客户端一台一台地升级,面对这个实际问题,在最近的一个小项目中,本人设计了一个 ...

  8. 晋江年下文爬取【xpath】

    ''' @Modify Time @Author 目标:晋江年下文 爬取6页 ------------ ------- http://www.jjwxc.net/search.php?kw=%C4%E ...

  9. spash和selenium浅析

    Splash是什么: Splash是一个Javascript渲染服务.它是一个实现了HTTP API的轻量级浏览器,Splash是用Python实现的,同时使用Twisted和QT.Twisted(Q ...

  10. ubuntu14编译安装qt5.0.1

    http://hi.baidu.com/houxn22/item/d652f29dec4a701f924f41a0 1.进入官网:http://qt-project.org/downloads下载对应 ...