Pytorch笔记 (3) 科学计算1
一、张量
标量 可以看作是 零维张量
向量 可以看作是 一维张量
矩阵 可以看作是 二维张量
继续扩展数据的维度,可以得到更高维度的张量 ————> 张量又称 多维数组
给定一个张量数据,就可以确定 它的维度 + 大小 + 元素个数
# 对于一个 大小为 0个条目的元组() ,元素个数为1
只有 维度、大小、元素个数、各元素都相同的两个张量,才是两个相同的张量
举例:
对于某个张量,若其中有个条目是 ,那么这个1不可省略。也应该算进张量的维度中。
大小为(,) 的二维张量 和 大小为 (,)的张量虽然有着相同的元素个数,但是它们的维度不同,大小不同 ————> 不是相同的张量
# 一维张量的大小具有 (s[0],) 的形式,而不是 (s[0],1) 或 (1,s[0]) 的形式。一维张量和向量同构,但严格意义上斌不是向量,也就没有 “行(列)向量”的说法。
(1)Pytorch 中的张量
在Pytorch 中,张量是运算的基本数据类型,用类 torch.Tensor 实现。
import torch
t2 = torch.tensor([[0,1,2],[3,4,5]]) #将一个列表 转换成torch.Tensor 类 实例t2 【即张量t2】
print(t2)
print('数据 = {}'.format(t2))
print(t2.reshape(3,2)) #重新组织元素 【使其大小从(2,3)变为(3,2)】
print(t2 + 1) #逐 元素运算 【利用张量 进行数学计算,进行逐元素+1,得到新的张量】
在Pytorch 中,可以通过torch.Tensor类 实例的成员获得性质 ———— 张量的大小、维度、元素个数
print('数据 = {}'.format(t2))
print('大小 = {}'.format(t2.size()))
print('维度 = {}'.format(t2.dim()))
print('元素个数 = {}'.format(t2.numel()))
另外,每个张量类实例还会有元素类型 (dtype):
可以通过张量类实例的成员 dtype 查看元素类型:
print('元素类型 = {}'.format(t2.dtype))
结果:
元素类型 = torch.int64
上述代码在构造 torch.Tensor类实例是,使用了int 值列表————> 张量的数据类型默认是 torch.int64型
如果用 bool 值构造,则构造出来的张量元素类型默认是————> torch.uint8型
如果用float值构造————> torch.float32型
二、构造torch.Tensor类实例
使用以下函数来构造torch.Tensor类实例
(1)构造含有特定数据的张量
torch.tensor()
t0 = torch.tensor(0)
t1 = torch.tensor([0.,1.,2.])
t2 = torch.tensor([[[0.,1.,2.],[3.,4.,5.],[6.,7.,8.]],[[9.,10.,11.],[12.,13.,14.],[15.,16.,17.]],[[18.,19.,20.],[21.,22.,23.],[24.,25.,26.]]])
利用该函数构造了张量 t0,t1,t2 ,t3 ,在张量的构造语句中,使用了列表作为参数
由于参数列表中的数据都是浮点数,所以这些张量的元素类型都是 torch.float32
torch.tensor()的关键字参数 dtype ———— 用来指定张量的元素类型
# 如果没有这个关键字参数,张量的元素类型是从 列表元素 推到而来的【bool —— torch.uint8; int —— torch.int64; float —— torch.float32】
t_int8 = torch.tensor([1,2],dtype=torch.int8)
(2)构造特定大小的张量
torch.zeros() torch.ones() torch.empty 函数可以使用多个int 类型的参数来构造给定类型的变量
要想用这些函数构造n维张量,就要传入n个整数,这n个整数就是张量大小的n个条目,用此方法,可以不指定张量中元素的值,也可以指定张量中元素的值为相同值。
如果不指定张量中元素的值,可以用 torch.empty() 函数 ———— 构造出来的张量的元素值 是不确定的!
如果要指定张量中元素的值,可以用 torch.zeros() torch.ones() —— 指定代码中的元素均为 0/1
可以用 torch.full() 将元素初始化为0 1 以外的值 ———— 需要两个不同的参数 ———— 张量大小和 要填充的值
t1 = torch.empty(2) #未初始化
print(t1)
t2 = torch.zeros(2,2) #各元素值为 0
print(t2)
t3 = torch.ones(2,2,2) #各元素值 为1
print(t3)
t4 = torch.full((2,2,2,2),3.) #各元素值为3
print(t4)
tensor([0., 0.])
tensor([[0., 0.],
[0., 0.]])
tensor([[[1., 1.],
[1., 1.]], [[1., 1.],
[1., 1.]]])
tensor([[[[3., 3.],
[3., 3.]], [[3., 3.],
[3., 3.]]], [[[3., 3.],
[3., 3.]], [[3., 3.],
[3., 3.]]]])
上述4个函数都有对应的 torch.*_like() 形式 ———— 构造一个和现有张量一样大小的张量
tt = torch.ones_like(t2)
print(tt)
tensor([[1., 1.],
[1., 1.]])
(3)构造等比 等差数列张量
等差数列:
torch.arange() 构造等差 ———— 需要指定 数列的开始元素 start【含,默认0】,结束元素 end【不含】,和公差step
得到的数列包括start 但不包括end,数列的长度为 [ (end - start ) / step ]
torch.range() 函数 可以得到长度为 [ (end - start ) / step + 1 ] 的等差数列
以下代码可得到: 大小为(4,) ,元素都是 0,1,2,3这四个数的张量
a1 = torch.arange(0,4,step=1)
a2 = torch.range(0,3,step=1)
print(a1)
print(a2)
tensor([0, 1, 2, 3])
tensor([0., 1., 2., 3.])
构造等差数列 还可以使用 torch.linspace() 函数 ———— 前两个参数为数列 最开始的 和 最后的数 ,steps 指数列中一共有几个数
a3 = torch.linspace(0,3,steps=4)
print(a3)
tensor([0., 1., 2., 3.])
等比数列:
torch.logspace() ———— 前两个参数 经过 10^x 的运算后,才是数列最开始的数 和最后的数,steps 指数列一共有几个数
a4 = torch.logspace(0,3,steps=4)
print(a4)
tensor([ 1., 10., 100., 1000.])
(4) 构造随机张量
概率分布 分为: 离散概率分布 + 连续概率分布
- 离散概率分布得到的样本一般是 0 1 这样的整数值
- 连续概率分布得到的样本一般是 浮点数
离散随机张量的构造:
连续随机张量:
【这块看的挺懵逼的.....所以就直接把书上的弄过来...后期直接查用。。。先学后面的,到后期再回顾这块】
Pytorch笔记 (3) 科学计算1的更多相关文章
- Pytorch笔记 (3) 科学计算2
一.组织张量的元素 (1)重排张量元素 本节介绍在不改变 张量元素个数 和 各元素的值的情况下改变张量的大小 torch.Tensor类的成员方法 reshape() 参数是多个int类型的值. 如果 ...
- python学习笔记(2):科学计算及数据可视化入门
一.NumPy 1.NumPy:Numberical Python 2.高性能科学计算和数据分析的基础包 3.ndarray,多维数组(矩阵),具有矢量运算的能力,快速.节省空间 (1)ndarray ...
- Python 科学计算-介绍
Python 科学计算 作者 J.R. Johansson (robert@riken.jp) http://dml.riken.jp/~rob/ 最新版本的 IPython notebook 课程文 ...
- Python科学计算(一)
作者 J.R. Johansson (robert@riken.jp) http://dml.riken.jp/~rob/ 最新版本的 IPython notebook 课程文件 http://git ...
- [Pytorch] pytorch笔记 <三>
pytorch笔记 optimizer.zero_grad() 将梯度变为0,用于每个batch最开始,因为梯度在不同batch之间不是累加的,所以必须在每个batch开始的时候初始化累计梯度,重置为 ...
- Python科学计算三维可视化(整理完结)
中国MOOC<Pyhton计算计算三维可视化>总结 课程url:here ,教师:黄天宇,嵩天 下文的图片和问题,答案都是从eclipse和上完课后总结的,转载请声明. Python数据三 ...
- Anaconda 用于科学计算的 Python 发行版
用于科学计算的 Python 发行版: 1.Anaconda https://www.continuum.io/ 公司continuum. 有商业版本. Anaconda is the le ...
- 科学计算软件——Octave安装
Octave是一个旨在提供与Matlab语法兼容的开放源代码科学计算及数值分析的工具,是Matlab商业软件的一个强有力的竞争产品. 参考:[ML:Octave Installation] Gener ...
- windows下安装python科学计算环境,numpy scipy scikit ,matplotlib等
安装matplotlib: pip install matplotlib 背景: 目的:要用Python下的DBSCAN聚类算法. scikit-learn 是一个基于SciPy和Numpy的开源机器 ...
随机推荐
- mongodb 3.0 WT 引擎性能测试(转载)
网上转载来的测试,仅供参考.原文地址:http://www.mongoing.com/benchmark_3_0 类机器. 测试均在单机器,单实例的情况下进行. 机器A(cache 12G,即内存&g ...
- A*算法实现(图形化表示)——C++描述
概要 A*算法是一种启发式寻路算法,BFS是一种盲目的无目标的搜索算法,相比于BFS,A*算法根据适应度构建优先队列,根据适应度值可以很好的向目标点移动,具体详情,请看搜索相关文档,我在只是实现了在无 ...
- python3 百度AI-v3之 人脸对比 & 人脸检测 & 在线活体检测 接口
#!/usr/bin/python3 # 百度人脸对比 & 人脸检测api-v3 import sys, tkinter.messagebox, ast import ssl, json,re ...
- DevExpress ASP.NET v19.1版本亮点:Pivot Grid等控件
行业领先的.NET界面控件DevExpress 发布了v19.1版本,本文将以系列文章的方式为大家介绍DevExpress ASP.NET Controls v19.1中新增的一些控件及增强的控件功能 ...
- 实现分享功能(分享到qq空间,新浪微博)
//分享QQ好友 function qq(title,url,pic) { var p = { url: 'http://test.qichey ...
- 初学者的springmvc笔记02
springmvc笔记 springmvc拦截器,spring类型转换,spring实现文件上传/下载 1.SpringMVC标准配置 导入jar包:core contaner 在web.xml文件中 ...
- 如何在输入命令行npm run dev 之后vue项目自动在浏览器打开
使用代码编辑器打开vue项目代码,在config文件夹里面找到index.js 将里面的:autoOpenBrowser: false, 修改为 :autoOpenBrowser: true, 这个方 ...
- SQL Server里Grouping Sets的威力【转】
在SQL Server里,你有没有想进行跨越多个列/纬度的聚集操作,不使用SSAS许可(SQL Server分析服务).我不是说在生产里使用开发版,也不是说安装盗版SQL Server. 不可能的任务 ...
- CSS的 背景属性
㈠背景色 background-color ⑴background-color 属性设置元素的背景颜色. ⑵元素背景的范围: background-color 属性为元素设置一种纯色.这种颜色会填充 ...
- QTableWidgetItem QTreeWidgwtItem 复选框的取消显示方法
思路: QTableWidgetItem :item->setData(Qt::CheckStateRole,QVariant()); QTreeWidgwtItem :item-> ...