一、张量

标量 可以看作是  零维张量

向量 可以看作是  一维张量

矩阵 可以看作是  二维张量

继续扩展数据的维度,可以得到更高维度的张量 ————>  张量又称 多维数组

给定一个张量数据,就可以确定 它的维度 + 大小 + 元素个数

# 对于一个 大小为 0个条目的元组() ,元素个数为1

只有 维度、大小、元素个数、各元素都相同的两个张量,才是两个相同的张量

举例:
对于某个张量,若其中有个条目是 ,那么这个1不可省略。也应该算进张量的维度中。
大小为(,) 的二维张量 和 大小为 (,)的张量虽然有着相同的元素个数,但是它们的维度不同,大小不同 ————> 不是相同的张量

# 一维张量的大小具有 (s[0],) 的形式,而不是 (s[0],1) 或 (1,s[0]) 的形式。一维张量和向量同构,但严格意义上斌不是向量,也就没有 “行(列)向量”的说法。

(1)Pytorch 中的张量

在Pytorch 中,张量是运算的基本数据类型,用类  torch.Tensor  实现。

import torch
t2 = torch.tensor([[0,1,2],[3,4,5]]) #将一个列表 转换成torch.Tensor 类 实例t2 【即张量t2】
print(t2)
print('数据 = {}'.format(t2))
print(t2.reshape(3,2)) #重新组织元素 【使其大小从(2,3)变为(3,2)】
print(t2 + 1) #逐 元素运算 【利用张量 进行数学计算,进行逐元素+1,得到新的张量】

在Pytorch 中,可以通过torch.Tensor类 实例的成员获得性质 ————  张量的大小、维度、元素个数

print('数据 = {}'.format(t2))
print('大小 = {}'.format(t2.size()))
print('维度 = {}'.format(t2.dim()))
print('元素个数 = {}'.format(t2.numel()))

另外,每个张量类实例还会有元素类型 (dtype):

可以通过张量类实例的成员 dtype 查看元素类型

print('元素类型 = {}'.format(t2.dtype))

结果:

元素类型 = torch.int64

上述代码在构造 torch.Tensor类实例是,使用了int 值列表————>  张量的数据类型默认是 torch.int64型

如果用 bool 值构造,则构造出来的张量元素类型默认是————>  torch.uint8型

如果用float值构造————>  torch.float32型

二、构造torch.Tensor类实例

使用以下函数来构造torch.Tensor类实例

(1)构造含有特定数据的张量

torch.tensor()

t0 = torch.tensor(0)
t1 = torch.tensor([0.,1.,2.])
t2 = torch.tensor([[[0.,1.,2.],[3.,4.,5.],[6.,7.,8.]],[[9.,10.,11.],[12.,13.,14.],[15.,16.,17.]],[[18.,19.,20.],[21.,22.,23.],[24.,25.,26.]]])

利用该函数构造了张量 t0,t1,t2 ,t3 ,在张量的构造语句中,使用了列表作为参数

由于参数列表中的数据都是浮点数,所以这些张量的元素类型都是 torch.float32

torch.tensor()的关键字参数 dtype ———— 用来指定张量的元素类型

# 如果没有这个关键字参数,张量的元素类型是从 列表元素 推到而来的【bool —— torch.uint8;   int —— torch.int64;   float —— torch.float32】

t_int8 = torch.tensor([1,2],dtype=torch.int8)

(2)构造特定大小的张量

torch.zeros()  torch.ones()   torch.empty 函数可以使用多个int 类型的参数来构造给定类型的变量

要想用这些函数构造n维张量,就要传入n个整数,这n个整数就是张量大小的n个条目,用此方法,可以不指定张量中元素的值,也可以指定张量中元素的值为相同值。

如果不指定张量中元素的值,可以用 torch.empty() 函数 ———— 构造出来的张量的元素值 是不确定的!

如果要指定张量中元素的值,可以用 torch.zeros() torch.ones() —— 指定代码中的元素均为 0/1

可以用 torch.full() 将元素初始化为0 1 以外的值 ———— 需要两个不同的参数 ———— 张量大小和 要填充的值

t1 = torch.empty(2)  #未初始化
print(t1)
t2 = torch.zeros(2,2) #各元素值为 0
print(t2)
t3 = torch.ones(2,2,2) #各元素值 为1
print(t3)
t4 = torch.full((2,2,2,2),3.) #各元素值为3
print(t4)
tensor([0., 0.])
tensor([[0., 0.],
[0., 0.]])
tensor([[[1., 1.],
[1., 1.]], [[1., 1.],
[1., 1.]]])
tensor([[[[3., 3.],
[3., 3.]], [[3., 3.],
[3., 3.]]], [[[3., 3.],
[3., 3.]], [[3., 3.],
[3., 3.]]]])

上述4个函数都有对应的 torch.*_like() 形式 ———— 构造一个和现有张量一样大小的张量

tt = torch.ones_like(t2)
print(tt)
tensor([[1., 1.],
[1., 1.]])

(3)构造等比 等差数列张量

等差数列:

 torch.arange()  构造等差 ———— 需要指定 数列的开始元素 start【含,默认0】,结束元素 end【不含】,和公差step

得到的数列包括start 但不包括end,数列的长度为 [ (end - start ) / step ]

torch.range() 函数 可以得到长度为 [ (end - start ) /  step  + 1 ] 的等差数列

以下代码可得到: 大小为(4,) ,元素都是 0,1,2,3这四个数的张量

a1 = torch.arange(0,4,step=1)
a2 = torch.range(0,3,step=1)
print(a1)
print(a2)
tensor([0, 1, 2, 3])
tensor([0., 1., 2., 3.])

构造等差数列 还可以使用 torch.linspace() 函数 ———— 前两个参数为数列 最开始的 和 最后的数 ,steps 指数列中一共有几个数

a3 = torch.linspace(0,3,steps=4)
print(a3)
tensor([0., 1., 2., 3.])

等比数列:

torch.logspace() ———— 前两个参数 经过 10^x 的运算后,才是数列最开始的数 和最后的数,steps 指数列一共有几个数

a4 = torch.logspace(0,3,steps=4)
print(a4)
tensor([   1.,   10.,  100., 1000.])

(4) 构造随机张量

概率分布 分为: 离散概率分布 + 连续概率分布

  1. 离散概率分布得到的样本一般是 0 1 这样的整数值
  2. 连续概率分布得到的样本一般是 浮点数

离散随机张量的构造:

连续随机张量:

【这块看的挺懵逼的.....所以就直接把书上的弄过来...后期直接查用。。。先学后面的,到后期再回顾这块】

Pytorch笔记 (3) 科学计算1的更多相关文章

  1. Pytorch笔记 (3) 科学计算2

    一.组织张量的元素 (1)重排张量元素 本节介绍在不改变 张量元素个数 和 各元素的值的情况下改变张量的大小 torch.Tensor类的成员方法 reshape() 参数是多个int类型的值. 如果 ...

  2. python学习笔记(2):科学计算及数据可视化入门

    一.NumPy 1.NumPy:Numberical Python 2.高性能科学计算和数据分析的基础包 3.ndarray,多维数组(矩阵),具有矢量运算的能力,快速.节省空间 (1)ndarray ...

  3. Python 科学计算-介绍

    Python 科学计算 作者 J.R. Johansson (robert@riken.jp) http://dml.riken.jp/~rob/ 最新版本的 IPython notebook 课程文 ...

  4. Python科学计算(一)

    作者 J.R. Johansson (robert@riken.jp) http://dml.riken.jp/~rob/ 最新版本的 IPython notebook 课程文件 http://git ...

  5. [Pytorch] pytorch笔记 <三>

    pytorch笔记 optimizer.zero_grad() 将梯度变为0,用于每个batch最开始,因为梯度在不同batch之间不是累加的,所以必须在每个batch开始的时候初始化累计梯度,重置为 ...

  6. Python科学计算三维可视化(整理完结)

    中国MOOC<Pyhton计算计算三维可视化>总结 课程url:here ,教师:黄天宇,嵩天 下文的图片和问题,答案都是从eclipse和上完课后总结的,转载请声明. Python数据三 ...

  7. Anaconda 用于科学计算的 Python 发行版

    用于科学计算的 Python 发行版: 1.Anaconda  https://www.continuum.io/    公司continuum.  有商业版本. Anaconda is the le ...

  8. 科学计算软件——Octave安装

    Octave是一个旨在提供与Matlab语法兼容的开放源代码科学计算及数值分析的工具,是Matlab商业软件的一个强有力的竞争产品. 参考:[ML:Octave Installation] Gener ...

  9. windows下安装python科学计算环境,numpy scipy scikit ,matplotlib等

    安装matplotlib: pip install matplotlib 背景: 目的:要用Python下的DBSCAN聚类算法. scikit-learn 是一个基于SciPy和Numpy的开源机器 ...

随机推荐

  1. POJ - 2774 Long Long Message (后缀数组/后缀自动机模板题)

    后缀数组: #include<cstdio> #include<algorithm> #include<cstring> #include<vector> ...

  2. 【BZOJ3534】【Luogu P3317】 [SDOI2014]重建 变元矩阵树,高斯消元

    题解看这里,主要想说一下以前没见过的变元矩阵树还有前几个题见到的几个小细节. 邻接矩阵是可以带权值的.求所有生成树边权和的时候我们有一个基尔霍夫矩阵,是度数矩阵减去邻接矩阵.而所谓变元矩阵树实际上就是 ...

  3. CH5101 LICS//hdu5904 LICS

    恭喜我已经正式沦为pj组选手QwQ 标题两个题其实不一样的.这是ch   这是hdu 一.CH上的:裸题,求LICS.n<=3000 经典普及组dp题,题解烂大街了.所以对于这题,只讲细节: $ ...

  4. Redis 管道pipeline

    Redis是一个cs模式的tcp server,使用和http类似的请求响应协议. 一个client可以通过一个socket连接发起多个请求命令. 每个请求命令发出后client通常会阻塞并等待red ...

  5. html背景图不随滚轮滚动,而且按住Ctrl并滚动滚轮时,图片不会变大缩小,就像百度的首页一样

    之前在百度知道我提问过这一个问题,后来解决了.不过好多人来问我时怎么解决的,源码.其实很简单.这里我贴一下代码.有需要的小伙伴不用再加我qq了,直接来这里取吧. 里面的图片是我随便找的. <!D ...

  6. 使用IDEA搭建一个 Spring + Spring MVC + Mybatis 的Web项目 ( 零配置文件 )

    前言: 除了mybatis 不是零配置,有些还是有xml的配置文件在里面的. 注解是Spring的一个构建的一个重要手段,减少写配置文件,下面解释一下一些要用到的注解: @Configuration  ...

  7. tp5中的return

    return 可以输出对象,但是不可以输出数组 class Index { public function index(Student $student) { $data = $student-> ...

  8. 【C#-读取XML文件】XMLReader读取XML文档

    使用   XmlReader.Create("文件路径")   加载xml文件 XmlReader使用流的方式来读取. //使用XMLReader读取XML数据 XmlReader ...

  9. Java枚举类的7种常用的方法

    转载于:https://www.cnblogs.com/xhlwjy/p/11314368.html

  10. node之events 模块,并通过实例化 EventEmitter 类来绑定和监听事件

    例子来源:http://www.runoob.com/nodejs/nodejs-event-loop.html http://www.runoob.com/nodejs/nodejs-event.h ...