B. Odd Sum Segments

time limit per test3 seconds

memory limit per test256 megabytes

inputstandard input

outputstandard output

You are given an array a consisting of n integers a1,a2,…,an. You want to split it into exactly k non-empty non-intersecting subsegments such that each subsegment has odd sum (i. e. for each subsegment, the sum of all elements that belong to this subsegment is odd). It is impossible to rearrange (shuffle) the elements of a given array. Each of the n elements of the array a must belong to exactly one of the k subsegments.

Let's see some examples of dividing the array of length 5 into 3 subsegments (not necessarily with odd sums): [1,2,3,4,5] is the initial array, then all possible ways to divide it into 3 non-empty non-intersecting subsegments are described below:

[1],[2],[3,4,5];

[1],[2,3],[4,5];

[1],[2,3,4],[5];

[1,2],[3],[4,5];

[1,2],[3,4],[5];

[1,2,3],[4],[5].

Of course, it can be impossible to divide the initial array into exactly k subsegments in such a way that each of them will have odd sum of elements. In this case print "NO". Otherwise, print "YES" and any possible division of the array. See the output format for the detailed explanation.

You have to answer q independent queries.

Input

The first line contains one integer q (1≤q≤2⋅105) — the number of queries. Then q queries follow.

The first line of the query contains two integers n and k (1≤k≤n≤2⋅105) — the number of elements in the array and the number of subsegments, respectively.

The second line of the query contains n integers a1,a2,…,an (1≤ai≤109), where ai is the i-th element of a.

It is guaranteed that the sum of n over all queries does not exceed 2⋅105 (∑n≤2⋅105).

Output

For each query, print the answer to it. If it is impossible to divide the initial array into exactly k subsegments in such a way that each of them will have odd sum of elements, print "NO" in the first line. Otherwise, print "YES" in the first line and any possible division of the array in the second line. The division can be represented as k integers r1, r2, ..., rk such that 1≤r1<r2<⋯<rk=n, where rj is the right border of the j-th segment (the index of the last element that belongs to the j-th segment), so the array is divided into subsegments [1;r1],[r1+1;r2],[r2+1,r3],…,[rk−1+1,n]. Note that rk is always n but you should print it anyway.

Example

inputCopy

3

5 3

7 18 3 14 1

5 4

1 2 3 4 5

6 2

1 2 8 4 10 2

outputCopy

YES

1 3 5

NO

NO

题意:

给你一个n个数的数组,让你分成k个部分,使每一部分的sum和是奇数

思路:

容易知道,想让sum和为奇数,这么这部分一定有奇数个奇数。

所以想构造成k个部分的条件是 if((sum-k)%2==0) ( sum是奇数的个数)

然后从后开始贪心的分成k个部分即可,

本题坑点:要求最后一个r一定是 n 这里wa了好几次。

细节见代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <vector>
#include <iomanip>
#define ALL(x) (x).begin(), (x).end()
#define rt return
#define dll(x) scanf("%I64d",&x)
#define xll(x) printf("%I64d\n",x)
#define sz(a) int(a.size())
#define all(a) a.begin(), a.end()
#define rep(i,x,n) for(int i=x;i<n;i++)
#define repd(i,x,n) for(int i=x;i<=n;i++)
#define pii pair<int,int>
#define pll pair<long long ,long long>
#define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
#define MS0(X) memset((X), 0, sizeof((X)))
#define MSC0(X) memset((X), '\0', sizeof((X)))
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define eps 1e-6
#define gg(x) getInt(&x)
#define chu(x) cout<<"["<<#x<<" "<<(x)<<"]"<<endl
using namespace std;
typedef long long ll;
ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
ll lcm(ll a,ll b){return a/gcd(a,b)*b;}
ll powmod(ll a,ll b,ll MOD){ll ans=1;while(b){if(b%2)ans=ans*a%MOD;a=a*a%MOD;b/=2;}return ans;}
inline void getInt(int* p);
const int maxn=1000010;
const int inf=0x3f3f3f3f;
/*** TEMPLATE CODE * * STARTS HERE ***/ int a[maxn];
int n,k;
int main()
{
//freopen("D:\\common_text\\code_stream\\in.txt","r",stdin);
//freopen("D:\\common_text\code_stream\\out.txt","w",stdout);
int t;
gg(t);
while(t--)
{
gg(n);gg(k);
int sum=0;
repd(i,1,n)
{
gg(a[i]);
a[i]%=2;
sum+=a[i];
}
if(sum<k)
{
printf("NO\n");
continue;
}
if((sum-k)%2!=0)
{
printf("NO\n");
continue;
}
printf("YES\n");
std::vector<int> ans;
for(int i=n;i>=1;i--)
{
if(k)
{
if(a[i])
{
ans.push_back(i);
// printf("
// %d ",i);
k--;
}
}
}
ans[0]=n;
for(int i=sz(ans)-1;i>=0;--i)
{
printf("%d ",ans[i] );
}
printf("\n"); // cout<<endl;
} return 0;
} inline void getInt(int* p) {
char ch;
do {
ch = getchar();
} while (ch == ' ' || ch == '\n');
if (ch == '-') {
*p = -(getchar() - '0');
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 - ch + '0';
}
}
else {
*p = ch - '0';
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 + ch - '0';
}
}
}

Codeforces Round #575 (Div. 3) B. Odd Sum Segments (构造,数学)的更多相关文章

  1. Codeforces Round #575 (Div. 3) B. Odd Sum Segments 、C Robot Breakout

    传送门 B题题意: 给你n个数,让你把这n个数分成k个段(不能随意调动元素位置).你需要保证这k个段里面所有元素加起来的和是一个奇数.问可不可以这样划分成功.如果可以打印YES,之后打印出来是从哪里开 ...

  2. Codeforces Round #575 (Div. 3) 昨天的div3 补题

    Codeforces Round #575 (Div. 3) 这个div3打的太差了,心态都崩了. B. Odd Sum Segments B 题我就想了很久,这个题目我是找的奇数的个数,因为奇数想分 ...

  3. Codeforces Round #556 (Div. 2) - C. Prefix Sum Primes(思维)

    Problem  Codeforces Round #556 (Div. 2) - D. Three Religions Time Limit: 1000 mSec Problem Descripti ...

  4. Codeforces Round #575 (Div. 3)

    本蒟蒻已经掉到灰名了(菜到落泪),希望这次打完能重回绿名吧...... 这次赛中A了三题 下面是本蒟蒻的题解 A.Three Piles of Candies 这题没啥好说的,相加除2就完事了 #in ...

  5. Codeforces Round #575 (Div. 3) 题解

    比赛链接:https://codeforc.es/contest/1196 A. Three Piles of Candies 题意:两个人分三堆糖果,两个人先各拿一堆,然后剩下一堆随意分配,使两个人 ...

  6. Codeforces Round #275 (Div. 2) C - Diverse Permutation (构造)

    题目链接:Codeforces Round #275 (Div. 2) C - Diverse Permutation 题意:一串排列1~n.求一个序列当中相邻两项差的绝对值的个数(指绝对值不同的个数 ...

  7. Codeforces Codeforces Round #319 (Div. 2) B. Modulo Sum 背包dp

    B. Modulo Sum Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/577/problem/ ...

  8. Codeforces Round #344 (Div. 2) E. Product Sum 维护凸壳

    E. Product Sum 题目连接: http://www.codeforces.com/contest/631/problem/E Description Blake is the boss o ...

  9. Codeforces Round #646 (Div. 2) A. Odd Selection(数学)

    题目链接:https://codeforces.com/contest/1363/problem/A 题意 判断是否能从 $n$ 个数中选 $x$ 个数加起来和为奇数. 题解 首先 $n$ 个数中至少 ...

随机推荐

  1. [Java]分解算术表达式二

    源码: package com.hy; import java.io.BufferedReader; import java.io.IOException; import java.io.InputS ...

  2. 使用ViewPager实现广告自动轮播的效果

    package com.loaderman.viewpgerlunbodemo; import android.os.Bundle; import android.os.Handler; import ...

  3. HTML+CSS实现导航栏二级下拉菜单完整代码

    工具是vs code 代码如下 <!DOCTYPE html> <html lang="en"> <head> <meta charset ...

  4. Function Expression

    One of the key characteristics of function declarations is function declaration hoisting, whereby fu ...

  5. JavaScript基础修炼(14)

    目录 一. PCM格式是什么 二. 浏览器中的音频采集处理 三. 需求实现 方案1——服务端FFmpeg实现编码 方案2——ScriptProcessorNode手动处理数据流 参考文献 示例代码托管 ...

  6. 【HANA系列】SAP UI5上传图片 用XSJS存储在HANA中的方法

    公众号:SAP Technical 本文作者:matinal 原文出处:http://www.cnblogs.com/SAPmatinal/ 原文链接:[HANA系列]SAP UI5上传图片 用XSJ ...

  7. (转)GIS中的4D产品(DLG、DRG、DEM、DOM)

    DLG 数字线划地图(DLG, Digital Line Graphic):是与现有线划基本一致的各地图要素的矢量 数据集,且保存各要素间的空间关系和相关的属性信息. 在世字测图中,最为常见的产品就是 ...

  8. 【转载】GitHub 标星 1.2w+,超全 Python 常用代码合集,值得收藏!

    本文转自逆袭的二胖,作者二胖 今天给大家介绍一个由一个国外小哥用好几年时间维护的 Python 代码合集.简单来说就是,这个程序员小哥在几年前开始保存自己写过的 Python 代码,同时把一些自己比较 ...

  9. 简述前后端项目RSA+AES加解密

    一.登录机制 在项目中,我们可以大致得出一个登录的过程,主要分为  登录验证.登录保持.退出三个部分.登录验证是指客户端提供用户名和密码,向服务器提出登录请求,服务器判断客户端是否可以登录并向客户端确 ...

  10. scrapy 正则汉字的提取方法

    [\u4E00-\u9FA5]