B. Odd Sum Segments

time limit per test3 seconds

memory limit per test256 megabytes

inputstandard input

outputstandard output

You are given an array a consisting of n integers a1,a2,…,an. You want to split it into exactly k non-empty non-intersecting subsegments such that each subsegment has odd sum (i. e. for each subsegment, the sum of all elements that belong to this subsegment is odd). It is impossible to rearrange (shuffle) the elements of a given array. Each of the n elements of the array a must belong to exactly one of the k subsegments.

Let's see some examples of dividing the array of length 5 into 3 subsegments (not necessarily with odd sums): [1,2,3,4,5] is the initial array, then all possible ways to divide it into 3 non-empty non-intersecting subsegments are described below:

[1],[2],[3,4,5];

[1],[2,3],[4,5];

[1],[2,3,4],[5];

[1,2],[3],[4,5];

[1,2],[3,4],[5];

[1,2,3],[4],[5].

Of course, it can be impossible to divide the initial array into exactly k subsegments in such a way that each of them will have odd sum of elements. In this case print "NO". Otherwise, print "YES" and any possible division of the array. See the output format for the detailed explanation.

You have to answer q independent queries.

Input

The first line contains one integer q (1≤q≤2⋅105) — the number of queries. Then q queries follow.

The first line of the query contains two integers n and k (1≤k≤n≤2⋅105) — the number of elements in the array and the number of subsegments, respectively.

The second line of the query contains n integers a1,a2,…,an (1≤ai≤109), where ai is the i-th element of a.

It is guaranteed that the sum of n over all queries does not exceed 2⋅105 (∑n≤2⋅105).

Output

For each query, print the answer to it. If it is impossible to divide the initial array into exactly k subsegments in such a way that each of them will have odd sum of elements, print "NO" in the first line. Otherwise, print "YES" in the first line and any possible division of the array in the second line. The division can be represented as k integers r1, r2, ..., rk such that 1≤r1<r2<⋯<rk=n, where rj is the right border of the j-th segment (the index of the last element that belongs to the j-th segment), so the array is divided into subsegments [1;r1],[r1+1;r2],[r2+1,r3],…,[rk−1+1,n]. Note that rk is always n but you should print it anyway.

Example

inputCopy

3

5 3

7 18 3 14 1

5 4

1 2 3 4 5

6 2

1 2 8 4 10 2

outputCopy

YES

1 3 5

NO

NO

题意:

给你一个n个数的数组,让你分成k个部分,使每一部分的sum和是奇数

思路:

容易知道,想让sum和为奇数,这么这部分一定有奇数个奇数。

所以想构造成k个部分的条件是 if((sum-k)%2==0) ( sum是奇数的个数)

然后从后开始贪心的分成k个部分即可,

本题坑点:要求最后一个r一定是 n 这里wa了好几次。

细节见代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <vector>
#include <iomanip>
#define ALL(x) (x).begin(), (x).end()
#define rt return
#define dll(x) scanf("%I64d",&x)
#define xll(x) printf("%I64d\n",x)
#define sz(a) int(a.size())
#define all(a) a.begin(), a.end()
#define rep(i,x,n) for(int i=x;i<n;i++)
#define repd(i,x,n) for(int i=x;i<=n;i++)
#define pii pair<int,int>
#define pll pair<long long ,long long>
#define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
#define MS0(X) memset((X), 0, sizeof((X)))
#define MSC0(X) memset((X), '\0', sizeof((X)))
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define eps 1e-6
#define gg(x) getInt(&x)
#define chu(x) cout<<"["<<#x<<" "<<(x)<<"]"<<endl
using namespace std;
typedef long long ll;
ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
ll lcm(ll a,ll b){return a/gcd(a,b)*b;}
ll powmod(ll a,ll b,ll MOD){ll ans=1;while(b){if(b%2)ans=ans*a%MOD;a=a*a%MOD;b/=2;}return ans;}
inline void getInt(int* p);
const int maxn=1000010;
const int inf=0x3f3f3f3f;
/*** TEMPLATE CODE * * STARTS HERE ***/ int a[maxn];
int n,k;
int main()
{
//freopen("D:\\common_text\\code_stream\\in.txt","r",stdin);
//freopen("D:\\common_text\code_stream\\out.txt","w",stdout);
int t;
gg(t);
while(t--)
{
gg(n);gg(k);
int sum=0;
repd(i,1,n)
{
gg(a[i]);
a[i]%=2;
sum+=a[i];
}
if(sum<k)
{
printf("NO\n");
continue;
}
if((sum-k)%2!=0)
{
printf("NO\n");
continue;
}
printf("YES\n");
std::vector<int> ans;
for(int i=n;i>=1;i--)
{
if(k)
{
if(a[i])
{
ans.push_back(i);
// printf("
// %d ",i);
k--;
}
}
}
ans[0]=n;
for(int i=sz(ans)-1;i>=0;--i)
{
printf("%d ",ans[i] );
}
printf("\n"); // cout<<endl;
} return 0;
} inline void getInt(int* p) {
char ch;
do {
ch = getchar();
} while (ch == ' ' || ch == '\n');
if (ch == '-') {
*p = -(getchar() - '0');
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 - ch + '0';
}
}
else {
*p = ch - '0';
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 + ch - '0';
}
}
}

Codeforces Round #575 (Div. 3) B. Odd Sum Segments (构造,数学)的更多相关文章

  1. Codeforces Round #575 (Div. 3) B. Odd Sum Segments 、C Robot Breakout

    传送门 B题题意: 给你n个数,让你把这n个数分成k个段(不能随意调动元素位置).你需要保证这k个段里面所有元素加起来的和是一个奇数.问可不可以这样划分成功.如果可以打印YES,之后打印出来是从哪里开 ...

  2. Codeforces Round #575 (Div. 3) 昨天的div3 补题

    Codeforces Round #575 (Div. 3) 这个div3打的太差了,心态都崩了. B. Odd Sum Segments B 题我就想了很久,这个题目我是找的奇数的个数,因为奇数想分 ...

  3. Codeforces Round #556 (Div. 2) - C. Prefix Sum Primes(思维)

    Problem  Codeforces Round #556 (Div. 2) - D. Three Religions Time Limit: 1000 mSec Problem Descripti ...

  4. Codeforces Round #575 (Div. 3)

    本蒟蒻已经掉到灰名了(菜到落泪),希望这次打完能重回绿名吧...... 这次赛中A了三题 下面是本蒟蒻的题解 A.Three Piles of Candies 这题没啥好说的,相加除2就完事了 #in ...

  5. Codeforces Round #575 (Div. 3) 题解

    比赛链接:https://codeforc.es/contest/1196 A. Three Piles of Candies 题意:两个人分三堆糖果,两个人先各拿一堆,然后剩下一堆随意分配,使两个人 ...

  6. Codeforces Round #275 (Div. 2) C - Diverse Permutation (构造)

    题目链接:Codeforces Round #275 (Div. 2) C - Diverse Permutation 题意:一串排列1~n.求一个序列当中相邻两项差的绝对值的个数(指绝对值不同的个数 ...

  7. Codeforces Codeforces Round #319 (Div. 2) B. Modulo Sum 背包dp

    B. Modulo Sum Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/577/problem/ ...

  8. Codeforces Round #344 (Div. 2) E. Product Sum 维护凸壳

    E. Product Sum 题目连接: http://www.codeforces.com/contest/631/problem/E Description Blake is the boss o ...

  9. Codeforces Round #646 (Div. 2) A. Odd Selection(数学)

    题目链接:https://codeforces.com/contest/1363/problem/A 题意 判断是否能从 $n$ 个数中选 $x$ 个数加起来和为奇数. 题解 首先 $n$ 个数中至少 ...

随机推荐

  1. block(块级元素)和 inline(内联元素) 的区别

    block(块级元素)和 inline(内联元素) 的区别 (2009-01-05 10:32:07) 转载▼ 标签: 杂谈 分类: div+css div这样的块级元素,就会自动占据一定矩形空间,可 ...

  2. 使用conda安装命令时一直出现问题,因为从2019年4月添加的国内镜像都不能用了

    安装过程中出现以下问题:(历尽千辛万苦,终于才查到原来是清华源,腾讯源都不能用了)The remote server could not find the noarch directory for t ...

  3. VMware or VirtualBox+centos7 安装教程

    一.准备工作:1.首次安装虚拟机时,需要的准备工作:打开intel的虚拟技术服务(否则安装centos系统时会报错).重启电脑,显示log时进入BIOS服务(不同电脑进入BIOS方式不同,一般是进入l ...

  4. Jmeter之乱码 (二)

    Jmeter查看结果树中响应结果中出现乱码,如下图所示: 解决方案: 修改Jmeter的默认字符编码与测试系统一致,修改{JMETER_HOME}\bin\jmeter.properties文件,如下 ...

  5. Toad oracle

    CJ2PFCQ6P49Q4WHQT2D03GNTVX2AN5DG6FWD04YL4QW625KT391J9YF38VKB92SNBWNW-RU-BOARD-BD cr2384

  6. Nginx Server 上80,443端口。http,https共存

    server{ listen 80; listen 443 ssl; server_name www.iamle.com; index index.html index.htm index.php; ...

  7. cocos2dx[3.2](2) 3.x巨变

    [v3.0 亮点]     > 使用 C++(C++11) 的特性取代了 Objective-C 的特性     > 优化了 Labels     > 优化了渲染器(比 v2.2 更 ...

  8. [IJCAI-17 口碑商家客流量预测]

    IJCAI-17 口碑商家客流量预测               第 1 赛季截止日期        2017/03/14 赛制介绍 重要时间2月8日 08:00: 评测启动3月7日 10:00: 报 ...

  9. IntelliJ IDEA将导入的项目转成maven项目

    今天导入公司的maven项目,发现结构不对劲,难怪说为啥一直不能部署tomcat,后面百度才了解到导入这个项目还不是maven项目,首先需要把这个项目变成maven项目,然后再进行tomcat的部署下 ...

  10. 从零开始学习GDI+ (三) 画笔与画刷