dp(动态规划之最佳路径+dfs)
http://acm.hdu.edu.cn/showproblem.php?pid=1078
FatMouse and Cheese
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 17910 Accepted Submission(s): 7619
has stored some cheese in a city. The city can be considered as a
square grid of dimension n: each grid location is labelled (p,q) where 0
<= p < n and 0 <= q < n. At each grid location Fatmouse has
hid between 0 and 100 blocks of cheese in a hole. Now he's going to
enjoy his favorite food.
FatMouse begins by standing at location
(0,0). He eats up the cheese where he stands and then runs either
horizontally or vertically to another location. The problem is that
there is a super Cat named Top Killer sitting near his hole, so each
time he can run at most k locations to get into the hole before being
caught by Top Killer. What is worse -- after eating up the cheese at one
location, FatMouse gets fatter. So in order to gain enough energy for
his next run, he has to run to a location which have more blocks of
cheese than those that were at the current hole.
Given n, k, and
the number of blocks of cheese at each grid location, compute the
maximum amount of cheese FatMouse can eat before being unable to move.
a line containing two integers between 1 and 100: n and k
n
lines, each with n numbers: the first line contains the number of
blocks of cheese at locations (0,0) (0,1) ... (0,n-1); the next line
contains the number of blocks of cheese at locations (1,0), (1,1), ...
(1,n-1), and so on.
The input ends with a pair of -1's.
1 2 5
10 11 6
12 12 7
-1 -1
//#include <bits/stdc++.h>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <iostream>
#include <cstdio>
#include <string>
#include <stdio.h>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <string.h>
#include <vector>
#define ME(x , y) memset(x , y , sizeof(x))
#define SF(n) scanf("%d" , &n)
#define rep(i , n) for(int i = 0 ; i < n ; i ++)
#define INF 0x3f3f3f3f
#define mod 998244353
#define PI acos(-1)
using namespace std;
typedef long long ll ;
int a[][] ;
int dp[][];
int dir[][] = {{ , } , {- , } , { , } , { , -}};
int n , k ; int dfs(int x , int y)
{
if(dp[x][y])//避免重复赋值,减少时间
return dp[x][y];
dp[x][y] = a[x][y] ;
for(int i = ; i < ; i++)
{
for(int j = ; j <= k ; j++)
{
int nx = x + dir[i][]*j ;
int ny = y + dir[i][]*j ;
if(nx >= && nx < n && ny >= && ny < n)
{
if(a[nx][ny] > a[x][y])
{
dp[x][y] = max(dp[x][y] , dfs(nx , ny) + a[x][y]);
}
}
} }
return dp[x][y] ;
} int main()
{
while(~scanf("%d%d" , &n , &k) && (n != - || k != -))
{
memset(dp , , sizeof(dp));
for(int i = ; i < n ; i++)
{
for(int j = ; j < n ; j++)
{
scanf("%d" , &a[i][j]);
}
}
cout << dfs( , ) << endl ;
}
return ;
}
dp(动态规划之最佳路径+dfs)的更多相关文章
- Day 5 笔记 dp动态规划
Day 5 笔记 dp动态规划 一.动态规划的基本思路 就是用一些子状态来算出全局状态. 特点: 无后效性--狗熊掰棒子,所以滚动什么的最好了 可以分解性--每个大的状态可以分解成较小的步骤完成 dp ...
- (转)dp动态规划分类详解
dp动态规划分类详解 转自:http://blog.csdn.NET/cc_again/article/details/25866971 动态规划一直是ACM竞赛中的重点,同时又是难点,因为该算法时间 ...
- 树形DP——动态规划与数据结构的结合,在树上做DP
本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是算法与数据结构的第15篇,也是动态规划系列的第4篇. 之前的几篇文章当中一直在聊背包问题,不知道大家有没有觉得有些腻味了.虽然经典的文 ...
- 【模板整合计划】DP动态规划
[模板整合计划]DP动态规划 一:[背包] 1.[01背包] 采药 \([P1048]\) #include<algorithm> #include<cstdio> int T ...
- 【leetcode-62,63,64 动态规划】 不同路径,最小路径和
给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小. 说明:每次只能向下或者向右移动一步. 示例: 输入: [ [1,3,1], [1,5,1] ...
- DP动态规划学习笔记——高级篇上
说了要肝的怎么能咕咕咕呢? 不了解DP或者想从基础开始学习DP的请移步上一篇博客:DP动态规划学习笔记 这一篇博客我们将分为上中下三篇(这样就不用咕咕咕了...),上篇是较难一些树形DP,中篇则是数位 ...
- leetcode_1293. Shortest Path in a Grid with Obstacles Elimination_[dp动态规划]
题目链接 Given a m * n grid, where each cell is either 0 (empty) or 1 (obstacle). In one step, you can m ...
- ArcGIS 网络分析[1.2] 利用1.1的线shp创建网络数据集/并简单试验最佳路径
上篇已经创建好了线数据(shp文件格式)链接:点我 这篇将基于此shp线数据创建网络数据集. 在此说明:shp数据的网络数据集仅支持单一线数据,也就是说基于shp文件的网络数据集,只能有一个shp线文 ...
- 使用 EOLINKER 进行接口测试的最佳路径 (下)
本文为 <使用 EOLINKER 进行接口测试的最佳路径> 下半部分文章,主要介绍测试脚本如何执行和报告生成,以及测试项目人员如何协作.还没看过上篇文章请戳 使用 EOLINKER 进行接 ...
随机推荐
- Django数据库查询优化与AJAX
目录 数据库设计三大范式 orm相关的数据库查询优化 惰性查询 all.only与defer select_related与prefetch_related MTV与MVC模型 MTV(models ...
- [每日一讲] Python系列:字符串(上)
字符串作为人类最常处理的内容,在计算中决定了其占有重要的地位.在 Python 中,字符串的操作和处理往往需要根据实际问题,结合其他操作才可以完成目标.在复杂世界仅仅是字符串 API 还无法完成工作. ...
- C#中[JsonIgnore]意义
字面意义是忽略序列化,就是当字段在序列化时,被[JsonIgnore]标记了的字段将被忽略序列化 序列化输出中使用Id和Name属性,但我绝对不会对AlternateName和Color感兴趣.我用[ ...
- dede后台系统基本参数空白怎么办?
dede后台系统基本参数空白怎么办? 如图: 解决办法:还原dede_sysconfig表即可 后台 系统-SQL命令行工具,执行如下sql delete table dede_sysconfig ...
- 关联规则挖掘--Eclat算法
- kibana的安装和监控
1.1:kibana搭建 kibana只需要在一台机器安装即可 1):解压 tar -zxvf kibana-5.5.2-linux-x86_64.tar.gz -C /home/angel/serv ...
- 5 November
拓扑排序 for (int i=1; i<=n; ++i) if (!ind[i]) q.push(i); while (!q.empty()) { int now=q.top(); q.pop ...
- 通过Hadoop jmx收集Namenode,Jobtracker相关信息
经常会有一些Hadoop监控的需求,例如datanode节点掉线,Tasktracker blacklist的数量,以及Namenode,Jobtracker的内存GC信息等. 之前采用Hadoop ...
- 尚硅谷Docker---1-5、docker简介
尚硅谷Docker---1-5.docker简介 一.总结 一句话总结: docker是环境打包:有点像windows镜像 docker的实质:缩小版.精细版.高度浓缩版的一个小型的linux系统 1 ...
- WAMPSERVER php
The Apache service named reported the following error:>>> (OS 10013)An attempt was made to ...