题目传送门

题意:

设不定方程:x^2+y^2=z^2
若正整数三元组(x,y,z)满足上述方程,则称为毕达哥拉斯三元组。
若gcd(x,y,z)=1,则称为本原的毕达哥拉斯三元组。

定理:
正整数x,y,z构成一个本原的毕达哥拉斯三元组且y为偶数,当且仅当存在互素的正整数m,n(m>n),其中m,n的奇偶性不同,
并且满足
  x=m^2-n^2,y=2*m*n, z=m^2+n^2

本题目让你求的是,在n范围内(x,y,z<=n)本原的毕达哥拉斯三元组的个数,以及n以内且毕达哥拉斯三元组不涉及的数的个数

思路:

本原的三元组有:(3,4,5),(7,24,25),(5,12,13),(8,15,17),即第一个要输出的为4
所有的毕达哥拉斯三元组,除了上述4个外,还有:(6,8,10),(9,12,15),(12,16,20),(15,20,25)
不包含在这些三元组里面的<=n的数有9个。

思路:很显然,依据前面给出的定理,只要枚举一下m,n(m,n<=sqrt(n)),然后将三元组乘以i(保证i*z在范围内即可),
就可以求出所有的毕达哥拉斯三元组。

代码:

/*100内的勾股数有52
勾股数满足: x=a*a-b*b;
y=2*a*b;
z=a*a+b*b;
其中a,b的奇偶一定要不同
*/
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
#define N 1000005
int vis[N]; int gcd(int a,int b)
{
if(b==) return a;
else return gcd(b,a%b);
}
int main()
{
int n;
while(~scanf("%d",&n))
{
memset(vis,,sizeof(vis));
int x,y,z;
int a,b,c;
int ans=;int tot=;
for(int i=;i*i<=n;i+=)
{
for(int j=;j*j<=n;j+=)
{
a=max(i,j);
b=min(i,j);
c=gcd(i,j);
if(c==)
{
x=a*a-b*b;
y=*a*b;
z=a*a+b*b;
for(int k=;k*z<=n;k++)
{
vis[x*k]=;
vis[y*k]=;
vis[z*k]=;//cout<<x*k<<" "<<y*k<<" "<<z*k<<endl;tot++;
}
if(z<=n)
{
ans++;
}
}
}
}
int cnt=;
for(int i=;i<=n;i++)
if(!vis[i]) cnt++;
printf("%d %d\n",ans,cnt);//cout<<tot<<endl;
}
}

poj1305 Fermat vs. Pythagoras(勾股数)的更多相关文章

  1. Fermat vs. Pythagoras POJ - 1305 (数论之勾股数组(毕达哥拉斯三元组))

    题意:(a, b, c)为a2+b2=c2的一个解,那么求gcd(a, b, c)=1的组数,并且a<b<c<=n,和不为解中所含数字的个数,比如在n等于10时,为1, 2, 7,9 ...

  2. 数论(毕达哥拉斯定理):POJ 1305 Fermat vs. Pythagoras

    Fermat vs. Pythagoras Time Limit: 2000MS   Memory Limit: 10000K Total Submissions: 1493   Accepted: ...

  3. UVa 106 - Fermat vs Pythagoras(数论题目)

    题目来源:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=3&pa ...

  4. MT【315】勾股数

    (高考压轴题)证明以下命题:(1)对任意正整数$a$都存在正整数$b,c(b<c)$,使得$a^2,b^2,c^2$成等差数列.(2)存在无穷多个互不相似的三角形$\Delta_n$,其边长$a ...

  5. hdu 6441 (费马大定理+勾股数 数学)

    题意是给定 n 和 a,问是否存在正整数 b,c 满足:a^n + b^n == c^n.输出 b  c,若不存在满足条件的 b,c,输出 -1 -1. 当 n > 2 时,由费马大定理,不存在 ...

  6. C语言 · 勾股数

    勾股数 勾股定理,西方称为毕达哥拉斯定理,它所对应的三角形现在称为:直角三角形. 已知直角三角形的斜边是某个整数,并且要求另外两条边也必须是整数. 求满足这个条件的不同直角三角形的个数. [数据格式] ...

  7. 猜想:一组勾股数a^2+b^2=c^2中,a,b之一必为4的倍数。

    证明: 勾股数可以写成如下形式 a=m2-n2 b=2mn c=m2+n2 而m,n按奇偶分又以下四种情况 m n 奇 偶 ① 偶 奇 ② 偶 偶 ③ 奇 奇 ④ 上面①②③三种情况中,mn中存在至少 ...

  8. 不用一个判断,用JS直接输出勾股数

    说明: 这里勾股数是符合a2+b2=c2的整数,比如32+42=52,52+122=132,怎么把符合条件的勾股数找出来呢?用代数替代的方法可以极大简化程序,直至一个判断都不用. 可以设a=m2-n2 ...

  9. 2018中国大学生程序设计竞赛 - 网络选拔赛 4 - Find Integer 【费马大定理+构造勾股数】

    Find Integer Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Tota ...

随机推荐

  1. Markdown的使用和计算机基础

    TOC] 一级标题 这不是开玩笑 你问我为什么? 粗的才好(滑稽) 什么!明明有人推我 ==一闪一闪亮晶晶== 我上面有人^人在这^ water?H~2~O(下标) hello world! hell ...

  2. 【前端】DOM操作

    1 什么是DOM 全称 Document Object Model 文档对象模型. 一个web页面的展示,是由html标签组合成的一个页面,dom对象实际就是将html标签转换成了一个文档对象.可以通 ...

  3. UVALive 3263: That Nice Euler Circuit (计算几何)

    题目链接 lrj训练指南 P260 //==================================================================== // 此题只需要考虑线 ...

  4. echart-如何将x轴和y轴的原点进行重合???

    设计稿突然让x轴 和y轴重合,我们可以设置图中的这个属性. 不知道还有没有别的设置属性,欢迎评论指出谢谢

  5. luogu 3488 [POI2009]LYZ-Ice Skates 线段树 + 思维

    Code: #include <bits/stdc++.h> #define setIO(s) freopen(s".in","r",stdin), ...

  6. luogu 5468 [NOI2019]回家路线 最短路/暴力

    想写一个 70 pts 算法,结果数据水,直接就切了 最短路: // luogu-judger-enable-o2 #include<bits/stdc++.h> using namesp ...

  7. Codeforces Round #350(Div 2)

    因为当天的下午才看到所以没来得及请假所以这一场没有打...于是信息课就打了这场的模拟赛. A题: *题目描述: 火星上的一年有n天,问每年最少和最多有多少休息日(周六周天). *题解: 模7分类讨论一 ...

  8. 【WINDOWS】设置路由表实现有线内网,无线外网

    前提!!! 需要有线无线双网卡

  9. int转字符串 stringstream

    1. 设定一个任意数字串,数出这个数中的偶数个数,奇数个数,及这个数中所包含的所有位数的总数,将答案按 “偶-奇-总” 的位序,排出得到新数.重复进行,最后会得到 123. #include<i ...

  10. 3D Computer Grapihcs Using OpenGL - 07 Passing Data from Vertex to Fragment Shader

    上节的最后我们实现了两个绿色的三角形,而绿色是直接在Fragment Shader中指定的. 这节我们将为这两个三角形进行更加自由的着色——五个顶点各自使用不同的颜色. 要实现这个目的,我们分两步进行 ...