题目描述 Description

在G城保卫战中,超级孪生蜘蛛Phantom001和Phantom002作为第三层防卫被派往守护内城南端一带极为隐秘的通道。

根据防护中心的消息,敌方已经有一只特种飞蛾避过第二层防卫,直逼内城南端通道入口。但优秀的蜘蛛已经在每个通道内埋下了坚固的大网,无论飞蛾进入哪个通道,他只有死路一条!(因为他是无法挣脱超级蛛网的)

现在,001和002分别驻扎在某两个通道内。各通道通过内线相通,通过每条内线需要一定的时间。当特种飞蛾被困某处,001或002会迅速赶来把它结果掉(当然是耗时最少的那个)。

001跟002都想尽早的完成任务,他们希望选择在最坏情况下能尽早完成任务的方案。

输入描述 Input Description

第一行为一个整数N (N<=100) 表示通道数目。

接下来若干行每行三个正整数a,b,t 表示通道a,b有内线相连,通过的时间为t。(t<=100)

(输入保证每个通道都直接/间接连通)

输出描述 Output Description

两个不同的整数x1,x2,分别为001,002驻扎的地点。(如果有多解,请输出x1最小的方案,x1相同则输出x2最小的方案)

样例输入 Sample Input

3

1 2 5

2 3 10

3 1 3

样例输出 Sample Output

1 2

数据范围及提示 Data Size & Hint
 

分类标签 Tags 点此展开

学到了很多:

譬如:

1)EOF

2)while(scanf("%……*n",&……*n)==n)可以进行输入不给多少组数据的情况

思路:

(先最大化最小值,然后在最大值中取最小值)

最大化最小值指的是:

对飞蛾最大化最小值(找到飞蛾的最坏位置)

最大值中取最小值就是:

在最坏的情况下找到最优解

先跑一遍floyd求多源最短路

然后来一个三重循环:依次枚举第一只蜘蛛的位置,第二只蜘蛛的位置以及飞蛾的位置

在两只蜘蛛到飞蛾的距离中取最小,再在所有最小之中取个最大作为最大时间(毕竟题目中说的是最坏情况嘛)

最后 最大时间 最小的那两只蜘蛛所在的位置即为最终答案,进行输出

接下来上代码:

 #include<iostream>
#include<algorithm>
#include<cstdio>
#define M 101
#define Maxn 0x7fffffff using namespace std; int n;
int map[M][M];
int a,b,t,x1,x2;
int ans,now,minx; int minn(int x,int y)//选出最小
{
return x < y ? x : y;
} int maxx(int x,int y)//选出最大
{
return x > y ? x : y;
} int main()
{
scanf("%d",&n);
ans=Maxn; for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
if(i!=j) map[i][j]=Maxn;//必须进行初始化!!!
else map[i][j]=;//表示自己到达自己距离为0
/*
for(int i=1;i<=n;i++)//最普通的情况下进行输入的方式
{
scanf("%d%d%d",&a,&b,&t);
map[a][b]=map[b][a]=t;//表示是联通的
}
*/
/*接下来的是看起来特别大佬的东西*/
while(scanf("%d%d%d",&a,&b,&t)==)//F6进行结束
//while(scanf("%d%d%d",&a,&b,&t)!=EOF)//F6进行结束
{
map[a][b]=map[b][a]=t;//连边
}
for(int k=;k<=n;k++)
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
if(map[i][k]<Maxn&&map[j][k]<Maxn&&map[i][j]>map[i][k]+map[k][j])//弗洛伊德
{
map[i][j]=map[i][k]+map[k][j];//更新
}
for(int i=;i<n;i++)
{//i代表x1蜘蛛的位置,j代表x2蜘蛛的位置
for(int j=i+;j<=n;j++) //因为题目中说过了:x1要比x2要小,所以j从i+1开始循环枚举
{
now=;//代表当前的最坏情况
//if(i==j) continue;
for(int k=;k<=n;k++)
{
minx=minn(map[i][k],map[j][k]);//选出两只蜘蛛到达帖中飞蛾的最短距离
now=maxx(now,minx);//列出最坏的情况
}
if(now<ans)//记录下最坏的情况中最短距离
{
ans=now;
x1=i;
x2=j;
}
}
}
printf("%d %d",x1,x2);
return ;
}

codevs 1020 孪生蜘蛛 x的更多相关文章

  1. Wikioi 1020 孪生蜘蛛 Label:Floyd最短路

    题目描述 Description 在G城保卫战中,超级孪生蜘蛛Phantom001和Phantom002作为第三层防卫被派往守护内城南端一带极为隐秘的通道. 根据防护中心的消息,敌方已经有一只特种飞蛾 ...

  2. codevs1020 孪生蜘蛛

    1020 孪生蜘蛛   题目描述 Description 在G城保卫战中,超级孪生蜘蛛Phantom001和Phantom002作为第三层防卫被派往守护内城南端一带极为隐秘的通道. 根据防护中心的消息 ...

  3. 套题T3

    秋实大哥与线段树 Time Limit: 3000/1000MS (Java/Others)     Memory Limit: 65535/65535KB (Java/Others) Submit  ...

  4. codevs——T1044 拦截导弹 || 洛谷——P1020 导弹拦截

    http://codevs.cn/problem/1044/ || https://www.luogu.org/problem/show?pid=1020#sub 时间限制: 1 s  空间限制: 1 ...

  5. codevs 3289 花匠

    题目:codevs 3289 花匠 链接:http://codevs.cn/problem/3289/ 这道题有点像最长上升序列,但这里不是上升,是最长"波浪"子序列.用动态规划可 ...

  6. codevs 1082 线段树练习 3(区间维护)

    codevs 1082 线段树练习 3  时间限制: 3 s  空间限制: 128000 KB  题目等级 : 大师 Master 题目描述 Description 给你N个数,有两种操作: 1:给区 ...

  7. codevs 1285 二叉查找树STL基本用法

    C++STL库的set就是一个二叉查找树,并且支持结构体. 在写结构体式的二叉查找树时,需要在结构体里面定义操作符 < ,因为需要比较. set经常会用到迭代器,这里说明一下迭代器:可以类似的把 ...

  8. codevs 1576 最长上升子序列的线段树优化

    题目:codevs 1576 最长严格上升子序列 链接:http://codevs.cn/problem/1576/ 优化的地方是 1到i-1 中最大的 f[j]值,并且A[j]<A[i] .根 ...

  9. codevs 1080 线段树点修改

    先来介绍一下线段树. 线段树是一个把线段,或者说一个区间储存在二叉树中.如图所示的就是一棵线段树,它维护一个区间的和. 蓝色数字的是线段树的节点在数组中的位置,它表示的区间已经在图上标出,它的值就是这 ...

随机推荐

  1. python 并发编程 IO模型介绍

    gevent 底层是怎么实现? io模型4个重要概念: 两类 一类:同步.异步 提交任务的方式 同步: 提交完任务后,在原地等待结果,拿到结果后,才执行下一行代码 #所谓同步,就是在发出一个功能调用时 ...

  2. 【转帖】联芸Maxio展示国产PCIe SSD主控:速度可达3.5GB/s

    联芸Maxio展示国产PCIe SSD主控:速度可达3.5GB/s https://www.cnbeta.com/articles/tech/855223.htm 国产主控 紫光做国产颗粒 国产器件对 ...

  3. Ubantu问题记录

    2019.4.21Ubantu问题:常用命令:sudo是一种权限管理机制,依赖于/etc/sudoers,定义了授权给哪个用户可以以管理员的身份执行管理命令格式:sudo -u USERNAME CO ...

  4. 虚拟机Vmware-网络配置

    非主业,只做简单介绍 虚拟机安装完毕后,需要进行网络配置. 虚拟机有 3 种网络连接方式: 仅主机模式 Host-only:仅支持 虚拟机与宿主机之间进行通信,无法连接外网 桥接模式 bridge:可 ...

  5. 2018icpc宁夏邀请赛_L_Continuous Intervals

    题意 给定一个序列,定义连续区间为区间的数排序后,任意两个相邻的数之差不超过1. 分析 假设区间最大值为\(max\),最小值为\(min\),不同数个数为\(cnt\),那么问题转化为求满足\(ma ...

  6. filebeat->redis->logstash->elasticsearch->kibana

    整体流程 filebeat收集openresty应用日志传输到Redis集群中 Logstash从Redis集群中拉取数据,并传输到Elasticsearch集群 使用Kibana可视化索引 使用El ...

  7. [.net core]2.hello word(.net core web app模版简介)

    创建一个.net core web app project 弹出这个窗口 empty代表 最低依赖,  意味着往往需要手动按需添加依赖. web应用程序(模型视力控制器) 则会帮你创建好control ...

  8. centos安装mysql以及授权登录用户

    CentOS第一次安装MySQL的完整步骤 目录     1.官方安装文档    2.下载 Mysql yum包    3.安转软件源    4.安装mysql服务端    5.首先启动mysql   ...

  9. java学习笔记(4)多态

    一.多态 --------------------------------------------- 1.定义:某一类事物的多种存在形态 例如:动物中猫,狗. 猫这个对象对应的类型是猫类型 猫 x  ...

  10. vue单页应用首次加载太慢之性能优化

    问题描述: 最近开发了一个单页应用,上线后发现页面初始加载要20s才能完成,这就很影响用户体验了,于是分析原因,发现页面加载时有个 vendor.js达到了3000多kb,于是在网上查找了一下原因,是 ...