MT【169】拉格朗日配方
已知$x^2+y^2+z^2=1$求$3xy-3yz+2z^2$的最大值______

答案:$3$
提示:$3(x^2+y^2+z^2)-(3xy-3yz+2z^2)=3\left(y+\dfrac{z-x}{2}\right)^2+\dfrac{1}{4}(3x+z)^2\ge0$
这里的3,是通过待定$f(x,y,z)=k(x^2+y^2+z^2)-(3xy-3yz+2z^2)$令$\Delta_y=0,\Delta_x=0$得到一个三次的关于$k$的式子:$-2k^3+4k^2+9k-9=0$得到.
MT【169】拉格朗日配方的更多相关文章
- MT【154】拉格朗日配方
(清华2017.4.29标准学术能力测试24) 设$x,y\in\mathbb{R}$,函数$f(x,y)=x^2+6y^2-2xy-14x-6y+72$的值域为$M$,则______ A.$1\in ...
- MT【291】2元非齐次不等式
实数$x,y$满足$x^2+y^2=20,$求$xy+8x+y$的最大值___ 法一:$xy\le\dfrac{1}{4}x^2+y^2,8x\le x^2+16,y\le\dfrac{1}{4}y^ ...
- MT【275】拉格朗日中值定理
已知$0<x_1<c<x_2<e^{\frac{3}{2}},$且$\dfrac{1-ln(c)}{c^2} = \dfrac{x_1ln(x_2)-x_2ln(x_1)}{x ...
- MT【189】二次条件配方
“当一幢建筑物完成时,应该把脚手架拆除干净.”——高斯 (2017北大特优)若对任意使得关于 \(x\) 的方程 \(ax^2+bx+c=0\)(\(ac\ne 0\))有实数解的 \(a,b,c\) ...
- MT【317】两次判别式
已知$a^2+b^2+c^2-ab-bc=1$求$c$的最大值______ 注意到$2c^2-3(a^2+b^2+c^2-ab-bc)=-(c-\dfrac{3}{2}b)^2-3(a-\dfrac{ ...
- Matlab数值计算示例: 牛顿插值法、LU分解法、拉格朗日插值法、牛顿插值法
本文源于一次课题作业,部分自己写的,部分借用了网上的demo 牛顿迭代法(1) x=1:0.01:2; y=x.^3-x.^2+sin(x)-1; plot(x,y,'linewidth',2);gr ...
- 拉格朗日插值法——用Python进行数值计算
插值法的伟大作用我就不说了.... 那么贴代码? 首先说一下下面几点: 1. 已有的数据样本被称之为 "插值节点" 2. 对于特定插值节点,它所对应的插值函数是必定存在且唯一的(关 ...
- 多点触摸(MT)协议(翻译)
参考: http://www.kernel.org/doc/Documentation/input/multi-touch-protocol.txt 转自:http://www.arm9home.ne ...
- [Math & Algorithm] 拉格朗日乘数法
拉格朗日乘数法(Lagrange Multiplier Method)之前听数学老师授课的时候就是一知半解,现在越发感觉拉格朗日乘数法应用的广泛性,所以特意抽时间学习了麻省理工学院的在线数学课程.新学 ...
随机推荐
- Pytorch 初识
文章目录 一个简单的回归网络的例子 再来一个例子 官方教程上图片识别的例子 import torch import torch.nn as nn import torch.nn.functional ...
- PHP实用代码片段(四)
1. 删除文件夹内容 function Delete($path) { if (is_dir($path) === true) { $files = array_diff(scandir($path) ...
- 把玩Alpine linux(二):APK包管理器
导读 Alpine Linux非常精简,开机内存占用也在二三十兆大,没有拆箱即用,就需要我们自己去做一些了解和配置 Alpine Linux的优劣 优势 Alpine Linux的Docker镜像特点 ...
- 聊一聊跨域,Vue向Django请求数据的一些问题
1.做前后端分离 前端使用Vue程序,后端使用Django配合rest-framework. 那么前端Vue通过API接口拿到数据会出现跨域的问题,JSONP只是在get中会用到的,所以这里使用cor ...
- MYSQL 三元 函数
mysql函数之流程控制-FreeOAhttp://www.freeoa.net/osuport/db/mysql-control-fun_2143.html mysql如何利用三元算法判断数字奇偶性 ...
- c# Mongodb两个字段不相等 MongoDB原生查询
var document = new BsonDocument{ { "$where","this.StarTime!=this.EndTime"}, { }, ...
- 练习MD5加密jar包编写
简介 参数签名可以保证开发的者的信息被冒用后,信息不会被泄露和受损.原因在于接入者和提供者都会对每一次的接口访问进行签名和验证. 签名sign的方式是目前比较常用的方式. 第1步:接入者把需求访问的接 ...
- 理解ORM的前提:数据库中的范式和约束
理解ORM的前提:数据库中的范式和约束 一.数据库中的范式: 范式, 英文名称是 Normal Form,它是英国人 E.F.Codd(关系数据库的老祖宗)在上个世纪70年代提出关系数据库模型后总结出 ...
- mysql异常:Packet for query is too large (10240 > 1024). You can change this value
出现这个问题的原因是:mysql的配置文件中 max_allowed_packet 设置过小,mysql根据配置文件会限制server接受的数据包大小. 还有人会说我操作的数据量明显没有超过这个值为啥 ...
- 重构客户注册-基于ActiveMQ实现短信验证码生产者
重构目标:将bos_fore项目中的CustomerAction作为短信消息生产者,将消息发给ActiveMQ,创建一个单独的SMS项目,作为短信息的消费者,从ActiveMQ获取短信消息,调用第三方 ...