【BZOJ1831】[AHOI2008]逆序对(动态规划)

题面

BZOJ

洛谷

题解

显然填入的数拎出来是不降的。

那么就可以直接大力\(dp\)。

设\(f[i][j]\)表示当前填到了\(i\),上一个填的数是\(j\)的最小逆序对数。

随便拿什么维护一下转移就好了。

#include<iostream>
#include<cstdio>
using namespace std;
#define MAX 10010
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
int n,K,sum,a[MAX],ans=1e9,f[MAX][101],s1[101],s2[101];
int main()
{
n=read();K=read();
for(int i=1;i<=n;++i)a[i]=read();
for(int i=1;i<=n;++i)if(~a[i])s2[a[i]]+=1;
for(int i=1;i<=K;++i)s2[i]+=s2[i-1];
for(int i=1;i<=K;++i)s1[i]=s2[i];
for(int i=1;i<=n;++i)
if(~a[i])
{
sum+=s1[a[i]-1];
for(int j=a[i];j<=K;++j)s1[j]-=1;
}
for(int i=1;i<=n;++i)
if(~a[i])
{
for(int j=1;j<=K;++j)f[i][j]=f[i-1][j];
for(int j=a[i];j<=K;++j)s2[j]-=1,s1[j]+=1;
}
else
{
for(int j=1;j<=K;++j)f[i][j]=f[i-1][j]+s2[j-1]+s1[K]-s1[j];
for(int j=1;j<K;++j)f[i][j+1]=min(f[i][j+1],f[i-1][j]+s2[j]+s1[K]-s1[j+1]);
for(int j=2;j<=K;++j)f[i][j]=min(f[i][j],f[i][j-1]);
}
for(int i=1;i<=K;++i)ans=min(ans,f[n][i]);
printf("%d\n",ans+sum);
return 0;
}

【BZOJ1831】[AHOI2008]逆序对(动态规划)的更多相关文章

  1. BZOJ1831: [AHOI2008]逆序对

    1831: [AHOI2008]逆序对 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 341  Solved: 226[Submit][Status] ...

  2. bzoj1831: [AHOI2008]逆序对(DP+双精bzoj1786)

    1831: [AHOI2008]逆序对 Description 小可可和小卡卡想到Y岛上旅游,但是他们不知道Y岛有多远.好在,他们找到一本古老的书,上面是这样说的: 下面是N个正整数,每个都在1~K之 ...

  3. 【BZOJ】1831: [AHOI2008]逆序对

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1831 考虑$-1$的位置上填写的数字一定是不降的. 令${f[i][j]}$表示$DP$到 ...

  4. BZOJ1786: [Ahoi2008]Pair 配对/1831: [AHOI2008]逆序对

    这两道题是一样的. 可以发现,-1变成的数是单调不降. 记录下原有的逆序对个数. 预处理出每个点取每个值所产生的逆序对个数,然后dp转移. #include<cstring> #inclu ...

  5. 【[AHOI2008]逆序对】

    被锤爆了 被这个题搞得自闭了一上午,觉得自己没什么前途了 我又没有看出来这个题的一个非常重要的性质 我们填进去的数一定是单调不降的 首先如果填进去的数并不是单调不降的,那么填进去本身就会产生一些逆序对 ...

  6. [AHOI2008] 逆序对

    link 我们可以很容易的推断出$-1$是单调不降的,若$i>j$且$a_i$与$a_j$都没有填数,若填完之后$a_i>a_j$或者$a_i<a_j$,则对答案产生影响的只在$[i ...

  7. 洛谷 P4280 bzoj1786 [AHOI2008]逆序对(dp)

    题面 luogu bzoj 题目大意: 给你一个长度为\(n\)的序列,元素都在\(1-k\)之间,有些是\(-1\),让你把\(-1\)也变成\(1-k\)之间的数,使得逆序对最多,求逆序对最少是多 ...

  8. [AHOI2008]逆序对(dp)

    小可可和小卡卡想到Y岛上旅游,但是他们不知道Y岛有多远.好在,他们找到一本古老的书,上面是这样说的: 下面是N个正整数,每个都在1~K之间.如果有两个数A和B,A在B左边且A大于B,我们就称这两个数为 ...

  9. BZOJ 1831: [AHOI2008]逆序对

    题目大意: 给出一个序列,有几个位置上的数字任意.求最小的逆序对数. 题解: 自己决定放置的数一定是单调不降的.不然把任意两个交换一下就能证明一定会增加逆序对. 然后就可以DP了,f[i][j]表示第 ...

随机推荐

  1. PS打造油画般的风景人像

  2. [2017BUAA软工助教]团队建议

    关于团队项目的个人建议 (以下排名不分先后) 一.hotcode5 你们组要做一个"课件-心得"共享平台 目前最大的竞争对手其实不是北航课程中心网站,而是每个系自己的大班群. 热心 ...

  3. 利用php查看某个服务的进程数

    查看进程就是使用ps命令而已,只不顾ps的参数太多了. 使用php查询的话,必须要开启几个函数(可以执行外部程序的函数),参考官网:http://php.net/manual/zh/book.exec ...

  4. 【学习总结】C-翁恺老师-入门-第4周<循环控制>

    [学习总结]C-翁恺老师-入门-总 1-阶乘:引入for循环 2-控制循环次数:初始化与控制条件的设置 任何一个for循环都可以写成一个while循环 for中的每一个表达式都是可以省略的:for(; ...

  5. 2019省赛训练组队赛3.31周四-17fj

    https://vjudge.net/contest/289558#overview A - Frog Therearex frogs and y chicken in a garden. Kim f ...

  6. 如何使用 Docker 来限制 CPU、内存和 IO等资源?

    如何使用 Docker 来限制 CPU.内存和 IO等资源?http://www.sohu.com/a/165506573_609513

  7. Memcache之安装篇

    本篇文章会介绍memcache在Windows和Linux下的具体安装过程,详细的记录其中的流程内容,帮助小伙伴们快速的搭建起memcache服务,废话少说,直接上!!! Windows: Memca ...

  8. IdentityServer4【Topic】之定义资源

    Defining Resources 定义资源 你在系统中通常定义的第一件事是你想要保护的资源.这可能是你的用户的身份信息,比如个人资料数据或电子邮件地址,或者访问api. 你可以通过C#对象模型(内 ...

  9. C#设计模式之2:单例模式

    在程序的设计过程中很多时候系统会要求对于某个类型在一个应用程序域中只出现一次,或者是因为性能的考虑,或者是由于逻辑的要求,总之是有这样的需求的存在,那在设计模式中正好有这么一种模式可以来满足这样的要求 ...

  10. java面试题2019

    面向对象的特征有哪些方面? 原来学的时候说是三种特征,即封装.继承和多态. 现在一般说面向对象有四大特性,即抽象.封装.继承和多态. 1.抽象:将同类对象的共同特征提取出来构造类. 2.封装:将数据隐 ...