【BZOJ1831】[AHOI2008]逆序对(动态规划)

题面

BZOJ

洛谷

题解

显然填入的数拎出来是不降的。

那么就可以直接大力\(dp\)。

设\(f[i][j]\)表示当前填到了\(i\),上一个填的数是\(j\)的最小逆序对数。

随便拿什么维护一下转移就好了。

#include<iostream>
#include<cstdio>
using namespace std;
#define MAX 10010
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
int n,K,sum,a[MAX],ans=1e9,f[MAX][101],s1[101],s2[101];
int main()
{
n=read();K=read();
for(int i=1;i<=n;++i)a[i]=read();
for(int i=1;i<=n;++i)if(~a[i])s2[a[i]]+=1;
for(int i=1;i<=K;++i)s2[i]+=s2[i-1];
for(int i=1;i<=K;++i)s1[i]=s2[i];
for(int i=1;i<=n;++i)
if(~a[i])
{
sum+=s1[a[i]-1];
for(int j=a[i];j<=K;++j)s1[j]-=1;
}
for(int i=1;i<=n;++i)
if(~a[i])
{
for(int j=1;j<=K;++j)f[i][j]=f[i-1][j];
for(int j=a[i];j<=K;++j)s2[j]-=1,s1[j]+=1;
}
else
{
for(int j=1;j<=K;++j)f[i][j]=f[i-1][j]+s2[j-1]+s1[K]-s1[j];
for(int j=1;j<K;++j)f[i][j+1]=min(f[i][j+1],f[i-1][j]+s2[j]+s1[K]-s1[j+1]);
for(int j=2;j<=K;++j)f[i][j]=min(f[i][j],f[i][j-1]);
}
for(int i=1;i<=K;++i)ans=min(ans,f[n][i]);
printf("%d\n",ans+sum);
return 0;
}

【BZOJ1831】[AHOI2008]逆序对(动态规划)的更多相关文章

  1. BZOJ1831: [AHOI2008]逆序对

    1831: [AHOI2008]逆序对 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 341  Solved: 226[Submit][Status] ...

  2. bzoj1831: [AHOI2008]逆序对(DP+双精bzoj1786)

    1831: [AHOI2008]逆序对 Description 小可可和小卡卡想到Y岛上旅游,但是他们不知道Y岛有多远.好在,他们找到一本古老的书,上面是这样说的: 下面是N个正整数,每个都在1~K之 ...

  3. 【BZOJ】1831: [AHOI2008]逆序对

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1831 考虑$-1$的位置上填写的数字一定是不降的. 令${f[i][j]}$表示$DP$到 ...

  4. BZOJ1786: [Ahoi2008]Pair 配对/1831: [AHOI2008]逆序对

    这两道题是一样的. 可以发现,-1变成的数是单调不降. 记录下原有的逆序对个数. 预处理出每个点取每个值所产生的逆序对个数,然后dp转移. #include<cstring> #inclu ...

  5. 【[AHOI2008]逆序对】

    被锤爆了 被这个题搞得自闭了一上午,觉得自己没什么前途了 我又没有看出来这个题的一个非常重要的性质 我们填进去的数一定是单调不降的 首先如果填进去的数并不是单调不降的,那么填进去本身就会产生一些逆序对 ...

  6. [AHOI2008] 逆序对

    link 我们可以很容易的推断出$-1$是单调不降的,若$i>j$且$a_i$与$a_j$都没有填数,若填完之后$a_i>a_j$或者$a_i<a_j$,则对答案产生影响的只在$[i ...

  7. 洛谷 P4280 bzoj1786 [AHOI2008]逆序对(dp)

    题面 luogu bzoj 题目大意: 给你一个长度为\(n\)的序列,元素都在\(1-k\)之间,有些是\(-1\),让你把\(-1\)也变成\(1-k\)之间的数,使得逆序对最多,求逆序对最少是多 ...

  8. [AHOI2008]逆序对(dp)

    小可可和小卡卡想到Y岛上旅游,但是他们不知道Y岛有多远.好在,他们找到一本古老的书,上面是这样说的: 下面是N个正整数,每个都在1~K之间.如果有两个数A和B,A在B左边且A大于B,我们就称这两个数为 ...

  9. BZOJ 1831: [AHOI2008]逆序对

    题目大意: 给出一个序列,有几个位置上的数字任意.求最小的逆序对数. 题解: 自己决定放置的数一定是单调不降的.不然把任意两个交换一下就能证明一定会增加逆序对. 然后就可以DP了,f[i][j]表示第 ...

随机推荐

  1. 多线程系列之九:Worker Thread模式

    一,Worker Thread模式 也叫ThreadPool(线程池模式) 二,示例程序 情景:一个工作车间有多个工人处理请求,客户可以向车间添加请求.请求类:Request定义了请求的信息和处理该请 ...

  2. 敏捷开发、DevOps相关书籍——书单

    自己瞎整理的一些书单,都是豆瓣评分比较高的书,可以作为选择的一个参考. 书名 豆瓣链接 持续交付:发布可靠软件的系统方法 https://book.douban.com/subject/6862062 ...

  3. python自动化常见问题汇总

           1.如何提高selenium脚本的执行速度? Selenium脚本的执行速度受多方面因素的影响,如网速,操作步骤的繁琐程度,页面加载的速度,以及我们在脚本中设置的等待时间,运行脚本的线程 ...

  4. asp.net core下一个简单的分页技术

    在做web应用的时候免不了要对数据进行分页,我最近在做asp.net core的开发的时候就遇到了这个需求,现在简单的记录一下: public class PaginatedList<T> ...

  5. Errors running builder 'DeploymentBuilder' on project

    Errors running builder 'DeploymentBuilder' on project 1.修改java源代码后点击保存,IDE 自动编译并热部署,提示如下错误: Errors o ...

  6. css3的clip-path方法剪裁实现

    本例讲解如何通过clip-path把一个div(元素,可以是图片等)裁切成不同的形状,这里以一个div为例宽高均为300px 注意:不支持IE和Firefox,支持webkit浏览器,在现代浏览器中需 ...

  7. python爬虫之redis环境简单部署

    Redis 简介 Redis 是完全开源免费的,遵守BSD协议,是一个高性能的key-value数据库. Redis 与其他 key - value 缓存产品有以下三个特点: Redis支持数据的持久 ...

  8. js auto hover button & html5 button autofocus

    js auto hover button & html5 button autofocus input // html 5 <input name="myinput" ...

  9. PHPCMS的使用

    1.下载安装phpcms 下载完后解压将install_packages上传到服务器并重命名为phpcms_test: 更改目录文件系统权限: chmod -R 777 phpcms_test 配置n ...

  10. jquery的show()和hide()方法

    显示和隐藏元素的方法 相当于CSS中的display属性 show()方法,相当于display:block hide()方法,相当于display:none