【BZOJ1831】[AHOI2008]逆序对(动态规划)
【BZOJ1831】[AHOI2008]逆序对(动态规划)
题面
题解
显然填入的数拎出来是不降的。
那么就可以直接大力\(dp\)。
设\(f[i][j]\)表示当前填到了\(i\),上一个填的数是\(j\)的最小逆序对数。
随便拿什么维护一下转移就好了。
#include<iostream>
#include<cstdio>
using namespace std;
#define MAX 10010
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
int n,K,sum,a[MAX],ans=1e9,f[MAX][101],s1[101],s2[101];
int main()
{
n=read();K=read();
for(int i=1;i<=n;++i)a[i]=read();
for(int i=1;i<=n;++i)if(~a[i])s2[a[i]]+=1;
for(int i=1;i<=K;++i)s2[i]+=s2[i-1];
for(int i=1;i<=K;++i)s1[i]=s2[i];
for(int i=1;i<=n;++i)
if(~a[i])
{
sum+=s1[a[i]-1];
for(int j=a[i];j<=K;++j)s1[j]-=1;
}
for(int i=1;i<=n;++i)
if(~a[i])
{
for(int j=1;j<=K;++j)f[i][j]=f[i-1][j];
for(int j=a[i];j<=K;++j)s2[j]-=1,s1[j]+=1;
}
else
{
for(int j=1;j<=K;++j)f[i][j]=f[i-1][j]+s2[j-1]+s1[K]-s1[j];
for(int j=1;j<K;++j)f[i][j+1]=min(f[i][j+1],f[i-1][j]+s2[j]+s1[K]-s1[j+1]);
for(int j=2;j<=K;++j)f[i][j]=min(f[i][j],f[i][j-1]);
}
for(int i=1;i<=K;++i)ans=min(ans,f[n][i]);
printf("%d\n",ans+sum);
return 0;
}
【BZOJ1831】[AHOI2008]逆序对(动态规划)的更多相关文章
- BZOJ1831: [AHOI2008]逆序对
1831: [AHOI2008]逆序对 Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 341 Solved: 226[Submit][Status] ...
- bzoj1831: [AHOI2008]逆序对(DP+双精bzoj1786)
1831: [AHOI2008]逆序对 Description 小可可和小卡卡想到Y岛上旅游,但是他们不知道Y岛有多远.好在,他们找到一本古老的书,上面是这样说的: 下面是N个正整数,每个都在1~K之 ...
- 【BZOJ】1831: [AHOI2008]逆序对
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1831 考虑$-1$的位置上填写的数字一定是不降的. 令${f[i][j]}$表示$DP$到 ...
- BZOJ1786: [Ahoi2008]Pair 配对/1831: [AHOI2008]逆序对
这两道题是一样的. 可以发现,-1变成的数是单调不降. 记录下原有的逆序对个数. 预处理出每个点取每个值所产生的逆序对个数,然后dp转移. #include<cstring> #inclu ...
- 【[AHOI2008]逆序对】
被锤爆了 被这个题搞得自闭了一上午,觉得自己没什么前途了 我又没有看出来这个题的一个非常重要的性质 我们填进去的数一定是单调不降的 首先如果填进去的数并不是单调不降的,那么填进去本身就会产生一些逆序对 ...
- [AHOI2008] 逆序对
link 我们可以很容易的推断出$-1$是单调不降的,若$i>j$且$a_i$与$a_j$都没有填数,若填完之后$a_i>a_j$或者$a_i<a_j$,则对答案产生影响的只在$[i ...
- 洛谷 P4280 bzoj1786 [AHOI2008]逆序对(dp)
题面 luogu bzoj 题目大意: 给你一个长度为\(n\)的序列,元素都在\(1-k\)之间,有些是\(-1\),让你把\(-1\)也变成\(1-k\)之间的数,使得逆序对最多,求逆序对最少是多 ...
- [AHOI2008]逆序对(dp)
小可可和小卡卡想到Y岛上旅游,但是他们不知道Y岛有多远.好在,他们找到一本古老的书,上面是这样说的: 下面是N个正整数,每个都在1~K之间.如果有两个数A和B,A在B左边且A大于B,我们就称这两个数为 ...
- BZOJ 1831: [AHOI2008]逆序对
题目大意: 给出一个序列,有几个位置上的数字任意.求最小的逆序对数. 题解: 自己决定放置的数一定是单调不降的.不然把任意两个交换一下就能证明一定会增加逆序对. 然后就可以DP了,f[i][j]表示第 ...
随机推荐
- redis中的hash、列表、集合操作
一.hash操作 数据结构:key:{k1:v1, k2:v2, k3:v3} 类似Python中的字典 如:info : {name: lina, age: 22, sex: F} hset key ...
- Of Study
Bacon Reading maketh a full man; conference a ready man; and writing an exact man. And therefore, if ...
- CI框架在模型中切换读写库和读写库
如果你想在控制器中切换在application/config/database.php中配置好的数据库group,那么你可以参考这篇博客:CI框架在控制器中切换读写库和读写库 如果你是希望在模型中切换 ...
- node学习: package.json
package.json 定义了这个项目所需要的各种模块,以及项目的配置信息(比如名称.版本.许可证等元数据) 1.创建 package.json npm init npm init –yes 2.p ...
- 在Linux添加PYTHONPATH方法以及修改环境变量方法
Linux下设置环境变量有三种方法,一种用于当前终端,一种用于当前用户,一种用于所有用户: 一:用于当前终端: 在当前终端中输入: export PATH=$PATH:<你的要加入的路径> ...
- Tomcat connecttimeout sessiontimeout
IIS中的会话超时和连接超时之间有什么区别? | Adept Technologies Inc.https://www.adepttech.com/blog/?p=825 IIS中的会话超时和连接超时 ...
- Tomcat v7.0 java.lang.IllegalArgumentException: Invalid character found in the request target. The valid characters are defined in RFC 7230 and RFC 3986
十二月 , :: 下午 org.apache.coyote.http11.AbstractHttp11Processor process 信息: Error parsing HTTP request ...
- 布局管理器之BorderLayout(边界布局)
边界布局管理器把容器的的布局分为五个位置:CENTER.EAST.WEST.NORTH.SOUTH.依次对应为:上北(NORTH).下南(SOUTH).左西(WEST).右东(EAST),中(CENT ...
- Prism框架中加载类库中时其中第三方类dll提示无法加载程序集
Prism框架是采用一种依赖注入的方式动态加载程序集,能够在程序需要加载的时候将程序集注入到里面去,实现程序的热插拔效果,而且采用这种框架能够让我们进行一个大项目的独立开发,在最近的一个项目中在独立开 ...
- saltstack一
Saltstack概述 Salt一种全新的基础设施管理方式,部署轻松,在几分钟内可运行起来,扩展性好,很容易管理上万台服务器,速度够快,服务器之间秒级通讯. salt底层采用动态的连接总线, 使其可以 ...