https://ac.nowcoder.com/acm/contest/321#question

代码写得蛮丑的。。真的很丑

像是高中教的veen图,并涉及到容斥原理。

 #include<cstdio>
#include<cmath>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<bits/stdc++.h>
using namespace std;
#define mem(a) memset(a,0,sizeof(a))
#define ll long long
#define maxx 1e9
ll gcd(ll a,ll k)
{
if(k == )
return a;
else
return gcd(k,a%k);
} int main()
{
int t;
cin>>t;
while(t--)
{
ll a,b,c,u=maxx;
cin>>a>>b>>c;
ll cnt=;
ll m,n,p;
m=a/gcd(a,b)*b;
n=a/gcd(a,c)*c;
p=b/gcd(b,c)*c;
cnt=cnt/gcd(cnt,a)*a;
cnt=cnt/gcd(cnt,b)*b;
cnt=cnt/gcd(cnt,c)*c;
u=u-(u/a+u/b+u/c-u/m-u/n-u/p+u/cnt);
cout<<u<<endl;
} }

1e9个兵临城下的更多相关文章

  1. 1e9个兵临城下(容斥原理)

    链接:https://ac.nowcoder.com/acm/contest/321/A 来源:牛客网 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 32768K,其他语言65536 ...

  2. 【OJ】 : 容斥原理计算出 1< =n < 1e9 中是2,3,5倍数的整数的数量

    最近ACM时遇到个题,题意如下. 问题描述: 有个1到n的数列,数一下其中能够被 2, 的时候有 ,,,,.这5个数满足条件,所以我们应该输出 5 . 输入 多组输入到文件尾,每组输入一个 n (n ...

  3. 求2的n次方对1e9+7的模,n大约为10的100000次方(费马小定理)

    昨天做了一个题,简化题意后就是求2的n次方对1e9+7的模,其中1<=n<=10100000.这个就算用快速幂加大数也会超时,查了之后才知道这类题是对费马小定理的考察. 费马小定理:假如p ...

  4. 3-为什么很多 对 1e9+7(100000007)取模

    首先有很多题目的答案是很大的,然而出题人的本意也不是让选手写高精度或者Java,所以势必要让答案落在整型的范围内.那么怎么做到这一点呢,对一个很大的质数取模即可(自行思考为什么不是小数).那么如果您学 ...

  5. Help Hanzo lightof 1197 求一段区间内素数个数,[l,r] 在 [1,1e9] 范围内。r-l<=1e5; 采用和平常筛素数的方法。平移区间即可。

    /** 题目:Help Hanzo lightof 1197 链接:https://vjudge.net/contest/154246#problem/M 题意:求一段区间内素数个数,[l,r] 在 ...

  6. 大组合取模之:1<=n<=m<=1e6,1<=p<=1e9

    /****************************** 大组合取模之:1<=n<=m<=1e6,1<=p<=1e9 使用:程序最开始调用getprime(),需要 ...

  7. 大组合数取模之lucas定理模板,1<=n<=m<=1e9,1<p<=1e6,p必须为素数

    typedef long long ll; /********************************** 大组合数取模之lucas定理模板,1<=n<=m<=1e9,1&l ...

  8. BZOJ 1911: [Apio2010]特别行动队 [斜率优化DP]

    1911: [Apio2010]特别行动队 Time Limit: 4 Sec  Memory Limit: 64 MBSubmit: 4142  Solved: 1964[Submit][Statu ...

  9. [数据结构]——堆(Heap)、堆排序和TopK

    堆(heap),是一种特殊的数据结构.之所以特殊,因为堆的形象化是一个棵完全二叉树,并且满足任意节点始终不大于(或者不小于)左右子节点(有别于二叉搜索树Binary Search Tree).其中,前 ...

随机推荐

  1. 大数据python词频统计之hdfs分发-cacheFile

    -cacheFile 分发,文件事先上传至Hdfs上,分发的是一个文件 1.找一篇文章The_Man_of_Property.txt: He was proud of him! He could no ...

  2. 原来商家登录系统的commonjs

    /* *适配 */ //orientationchange方向改变事件 (function (doc,win) { var docEl = doc.documentElement,//根元素html ...

  3. SQL*Plus工具

    或者

  4. Confluence 6 找到在创建 XML 备份的时候出现的错误

    错误可能是因为数据库突然不可访问而产生.如果你在你的日志中看到了错误  'Couldn't backup database data' ,这个指南将会帮助你更正这个错误.我们强烈推荐你备份 Confl ...

  5. Confluence 6 XML 备份失败的问题解决

    XML 站点备份仅仅被用于整合到一个新的数据库.设置一个测试服务器 或者 创建一个可用的备份策略 相对 XML 备份来说是更合适的策略. 相关页面: Enabling detailed SQL log ...

  6. 从 Confluence 5.3 及其早期版本中恢复空间

    如果你需要从 Confluence 5.3 及其早期版本中的导出文件恢复到晚于 Confluence 5.3 的 Confluence 中的话.你可以使用临时的 Confluence 空间安装,然后将 ...

  7. Java的家庭记账本程序(E)

    日期:2019.2.9 博客期:032 星期二 今天是把程序的相关Bug补一补,嗯`: 1.添加了跳转说明 生成了一个对于成员的权限声明内容,用户再登陆界面点击Go按钮后,切换至说明页面,再次点击Go ...

  8. Java编程的分期步骤(一)

    日期:2018.8.12 星期一 博客期:005 不知不觉来到第五期了,先简单说一下Java环境!(虽然Java都自学完了才说....)首先,就是在网站上下载一个java包,之后把它下载到全英文的一个 ...

  9. day11 函数的位置形参,位置实参,可变长位置形参,关键字形参

    今天内容 函数的参数详解 形参与实参 形参及形式参数,就是在定义函数是括号中指定的参数(本质就是一个名字) 实参及实际参数,指的是在调用函数是传入的参数)(本质就是一个值) 在调用函数是就会把形参和实 ...

  10. bzoj2200拓扑排序+最短路+联通块

    自己写的不知道哪里wa了,明明和网上的代码差不多.,. /* 给定一张图,有的边是无向边,有的是有向边,有向边不会出现在环中,且有可能是负权值 现在给定起点s,求出s到其余所有点的最短路长度 任何存在 ...