题目描述

  你在一家 IT 公司为大型写字楼或办公楼(offices)的计算机数据做备份。然而数据备份的工作是枯燥乏味
的,因此你想设计一个系统让不同的办公楼彼此之间互相备份,而你则坐在家中尽享计算机游戏的乐趣。已知办公
楼都位于同一条街上。你决定给这些办公楼配对(两个一组)。每一对办公楼可以通过在这两个建筑物之间铺设网
络电缆使得它们可以互相备份。然而,网络电缆的费用很高。当地电信公司仅能为你提供 K 条网络电缆,这意味
着你仅能为 K 对办公楼(或总计2K个办公楼)安排备份。任一个办公楼都属于唯一的配对组(换句话说,这 2K 
个办公楼一定是相异的)。此外,电信公司需按网络电缆的长度(公里数)收费。因而,你需要选择这 K 对办公
楼使得电缆的总长度尽可能短。换句话说,你需要选择这 K 对办公楼,使得每一对办公楼之间的距离之和(总距
离)尽可能小。下面给出一个示例,假定你有 5 个客户,其办公楼都在一条街上,如下图所示。这 5 个办公楼分
别位于距离大街起点 1km, 3km, 4km, 6km 和 12km 处。电信公司仅为你提供 K=2 条电缆。
  上例中最好的配对方案是将第 1 个和第 2 个办公楼相连,第 3 个和第 4 个办公楼相连。这样可按要求使用
 K=2 条电缆。第 1 条电缆的长度是 3km-1km=2km ,第 2 条电缆的长度是 6km-4km=2km。这种配对方案需要总长
 4km 的网络电缆,满足距离之和最小的要求。

输入

第一行包含整数n和k
其中n(2≤n≤100000)表示办公楼的数目,k(1≤k≤n/2)表示可利用的网络电缆的数目。
接下来的n行每行仅包含一个整数(0≤s≤1000000000),表示每个办公楼到大街起点处的距离。
这些整数将按照从小到大的顺序依次出现。

输出

输出应由一个正整数组成,给出将2K个相异的办公楼连成k对所需的网络电缆的最小总长度。

样例输入

5 2
1
3
4
6
12

样例输出

4
 
首先选择的每对点一定是相邻的点,将相邻坐标相减即可得到$n-1$个可选方案,我们需要在这些方案中选择$k$个。因为每个点只能在最多一个方案中,所以相邻的方案不能同时选择。这个问题显然可以用费用流来解决:将$n$个点中每个点分成两个点$a_{i},b_{i}$,源点连向$a_{i}$,$b_{i}$连向汇点,$a_{i}$连向$b_{i-1}$和$b_{i+1}$。这样跑一遍费用流既可以得到答案二倍大小的最小费用(因为在建模中$i$匹配$i+1$和$i+1$匹配$i$被算了两次),我们考虑这个图的特殊性质:每个点只向它两边的两个点连边(即不考虑源点与汇点连的边,剩余边是两条交错的链)。那么当选了一种方案$i$进行增广并建反向边之后,如果在之后增广到$i$相邻的一个方案(假设是$i-1$),那么根据费用流每次选择最短路的原则一定会走$i$方案的反向边然后再走$i+1$方案。这样我们就可以模拟这个过程,用堆来维护当前代价最小的方案,每次取出最优方案后(假设最优方案为$b$,相邻方案为$a,c$),将最优方案与相邻方案取出,并在原位置放入代价为$a+c-b$的新方案,这样如果选了新方案就说明实际选择了$a$和$c$而放弃了$b$,也就实现了费用流的反悔过程。而这样每次取出堆顶时也保证了多选了一个方案(不过这里注意两端的处理)。而相邻关系用双向链表维护即可。

#include<set>
#include<map>
#include<queue>
#include<stack>
#include<cmath>
#include<cstdio>
#include<vector>
#include<bitset>
#include<cstring>
#include<iostream>
#include<algorithm>
#define ll long long
#define pr pair<ll,int>
using namespace std;
int n,k;
priority_queue< pr,vector<pr>,greater<pr> >q;
int cnt;
int pre[600010];
int suf[600010];
int a[600010];
int vis[300010];
ll s[300010];
int t[300010];
int v[600010];
ll ans;
int main()
{
scanf("%d%d",&n,&k);
for(int i=1;i<=n;i++)
{
scanf("%d",&a[i]);
if(i!=1)
{
v[i]=a[i]-a[i-1];
}
}
for(int i=2;i<=n;i++)
{
cnt++;
s[cnt]=1ll*v[i];
t[cnt]=cnt;
pre[cnt]=cnt-1;
suf[cnt]=cnt+1;
q.push(make_pair(s[cnt],t[cnt]));
}
pre[1]=0;
suf[n-1]=0;
s[0]=1<<30;
while(k)
{
int now=q.top().second;
ll res=q.top().first;
q.pop();
if(!vis[now])
{
ans+=res;
vis[now]=1;
vis[pre[now]]=1;
vis[suf[now]]=1;
cnt++;
t[cnt]=cnt;
s[cnt]=s[pre[now]]+s[suf[now]]-res;
pre[cnt]=pre[pre[now]];
suf[cnt]=suf[suf[now]];
suf[pre[pre[now]]]=cnt;
pre[suf[suf[now]]]=cnt;
q.push(make_pair(s[cnt],t[cnt]));
k--;
}
}
printf("%lld",ans);
}

BZOJ1150[CTSC2007]数据备份Backup——模拟费用流+堆+链表的更多相关文章

  1. 【bzoj1150】[CTSC2007]数据备份Backup 模拟费用流+链表+堆

    题目描述 你在一家 IT 公司为大型写字楼或办公楼(offices)的计算机数据做备份.然而数据备份的工作是枯燥乏味的,因此你想设计一个系统让不同的办公楼彼此之间互相备份,而你则坐在家中尽享计算机游戏 ...

  2. BZOJ1150 [CTSC2007]数据备份Backup 链表+小根堆

    BZOJ1150 [CTSC2007]数据备份Backup 题意: 给定一个长度为\(n\)的数组,要求选\(k\)个数且两两不相邻,问最小值是多少 题解: 做一个小根堆,把所有值放进去,当选择一个值 ...

  3. bzoj1150 [CTSC2007]数据备份Backup 双向链表+堆

    [CTSC2007]数据备份Backup Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2727  Solved: 1099[Submit][Stat ...

  4. BZOJ1150 [CTSC2007] 数据备份Backup 贪心_堆_神题

    Description 你在一家 IT 公司为大型写字楼或办公楼(offices)的计算机数据做备份.然而数据备份的工作是枯燥乏味 的,因此你想设计一个系统让不同的办公楼彼此之间互相备份,而你则坐在家 ...

  5. BZOJ1150 [CTSC2007]数据备份Backup 【堆 + 链表】

    题目 你在一家 IT 公司为大型写字楼或办公楼(offices)的计算机数据做备份.然而数据备份的工作是枯燥乏味 的,因此你想设计一个系统让不同的办公楼彼此之间互相备份,而你则坐在家中尽享计算机游戏的 ...

  6. BZOJ1150 [CTSC2007]数据备份Backup 贪心 堆

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1150 题意概括 数轴上面有一堆数字. 取出两个数字的代价是他们的距离. 现在要取出k对数,(一个数 ...

  7. bzoj1150: [CTSC2007]数据备份Backup

    题目大意: 在n个点中,选出k对相邻的互不相同的点,使k段距离的总和最小. 贪心,双向链表. 首先,点之间的距离是动态的,所以要用堆来维护.   每次都选择最近的点.但因为其他情况,可能最终不会选择这 ...

  8. bzoj1150: [CTSC2007]数据备份Backup--贪心+优先队列维护堆

    题目大意:将k对点两两相连,求最小长度 易证得,最优方案中,相连的办公楼一定是取相邻的比取不相邻的要更优 然后就可以用贪心来做这道题了.. 之前向CZL大神学习了用堆来贪心的做法orz 大概思路就是将 ...

  9. 【BZOJ1150】[CTSC2007]数据备份Backup 双向链表+堆(模拟费用流)

    [BZOJ1150][CTSC2007]数据备份Backup Description 你在一家 IT 公司为大型写字楼或办公楼(offices)的计算机数据做备份.然而数据备份的工作是枯燥乏味的,因此 ...

随机推荐

  1. Java线程池实现原理与技术(ThreadPoolExecutor、Executors)

    本文将通过实现一个简易的线程池理解线程池的原理,以及介绍JDK中自带的线程池ThreadPoolExecutor和Executor框架. 1.无限制线程的缺陷 多线程的软件设计方法确实可以最大限度地发 ...

  2. .net core实践系列之SSO-跨域实现

    前言 接着上篇的<.net core实践系列之SSO-同域实现>,这次来聊聊SSO跨域的实现方式.这次虽说是.net core实践,但是核心点使用jquery居多. 建议看这篇文章的朋友可 ...

  3. 现代JavaScript函数库 usuallyjs 的安装和使用

    usuallyjs usuallyjs 是一个面向现代 Web 开发的 JavaScript 实用函数库. usuallyjs 基于 ES6 开发,抛弃了传统 Web 开发中 DOM 和 BOM 操作 ...

  4. JS 异步系列 —— Promise 札记

    Promise 研究 Promise 的动机大体有以下几点: 对其 api 的不熟悉以及对实现机制的好奇; 很多库(比如 fetch)是基于 Promise 封装的,那么要了解这些库的前置条件得先熟悉 ...

  5. 快速导入导出Oracle数据demo(sqlldr、UTL_FILE)

    本文演示快速sqlldr导入.UTL_FILE导出Oracle表数据实例 表结构如下,演示数据约112万,可自行准备. create table MemberPointDemo ( MEMBERID ...

  6. VirtualBox安装复制Centos6.6配置网络

    由于要搭建mongodb的集群,先用虚拟机做下相关实验,以前都用VM Vare,但是现在这个电脑的配置不是太好,VM Vare比较耗资源,所以选择VirtualBox. 1.下载VirtualBox和 ...

  7. Array and Segments (Easy version) CodeForces - 1108E1 (暴力枚举)

    The only difference between easy and hard versions is a number of elements in the array. You are giv ...

  8. stark组件的增删改

      1.效果图 2.详细步骤解析 3.总结.代码   1.效果图 增 删除 改 2.详细步骤解析 1.构造增删改查url,反向解析 2.ModelForm定制add.edit页面 3.starak中的 ...

  9. Shell脚本命令图片

    查看相关文档:shell脚本1  shell脚本2

  10. 【转】shell之for、while、until循环

    一.简介       Shell编程中循环命令用于特定条件下决定某些语句重复执行的控制方式,有三种常用的循环语句:for.while和until.while循环和for循环属于“当型循环”,而unti ...