第一次知道这种背包还能退的。。。。

我们用dp[ i ]表示选取若干个物品重量到达 i 的方案数。

如果我们g[ i ]表示不用第 x 个物品的, 然后选若干其他的物品到达 i 的方案数。

if(i < cnt[ x ]) g[ i ] = dp[ i ]

else  g[ i ] = dp[ i ] - g[ i - cnt[ x ] ]

这样退一次就能删一个物品, 这个题目退两次就可以了。

一共只有52 × 52 / 2个本质不同的询问, 预处理一下。

#include<bits/stdc++.h>
#define LL long long
#define fi first
#define se second
#define mk make_pair
#define PLL pair<LL, LL>
#define PLI pair<LL, int>
#define PII pair<int, int>
#define SZ(x) ((int)x.size())
#define ull unsigned long long using namespace std; const int N = 1e5 + ;
const int inf = 0x3f3f3f3f;
const LL INF = 0x3f3f3f3f3f3f3f3f;
const int mod = ;
const double eps = 1e-;
const double PI = acos(-); int n, m, q, way, c[];
int dp[N], f[N], g[N], ans[][];
char s[N];
int F[N], Finv[N], inv[N]; int getPos(char x) {
if(islower(x)) return x - 'a';
else return x - 'A' + ;
} void add(int &a, int b) {
a += b; if(a >= mod) a -= mod;
} void init() {
inv[] = F[] = Finv[] = ;
for(int i = ; i < N; i++) inv[i] = 1ll * (mod - mod / i) * inv[mod % i] % mod;
for(int i = ; i < N; i++) F[i] = 1ll * F[i - ] * i % mod;
for(int i = ; i < N; i++) Finv[i] = 1ll * Finv[i - ] * inv[i] % mod;
} int main() {
init();
scanf("%s", s + );
n = strlen(s + );
for(int i = ; i <= n; i++)
c[getPos(s[i])]++;
m = n / ;
way = 1ll * F[m] * F[m] % mod;
for(int i = ; i < ; i++)
way = 1ll * way * Finv[c[i]] % mod;
dp[] = ;
for(int i = ; i < ; i++) {
if(!c[i]) continue;
for(int j = n - c[i]; j >= ; j--)
add(dp[j + c[i]], dp[j]);
}
for(int u = ; u < ; u++) {
for(int v = u + ; v < ; v++) {
if(!c[u] || !c[v]) continue;
for(int i = ; i <= n; i++) {
if(i < c[u]) f[i] = dp[i];
else {
f[i] = dp[i] - f[i - c[u]];
if(f[i] < ) f[i] += mod;
}
if(i < c[v]) g[i] = f[i];
else {
g[i] = f[i] - g[i - c[v]];
if(g[i] < ) g[i] += mod;
}
}
ans[u][v] = * g[m] % mod;
}
}
scanf("%d", &q);
while(q--) {
int x, y; scanf("%d%d", &x, &y);
x = getPos(s[x]), y =getPos(s[y]);
if(x > y) swap(x, y);
if(x == y) {
printf("%d\n", 1ll * dp[m] * way % mod);
} else {
printf("%d\n", 1ll * ans[x][y] * way % mod);
}
}
return ;
} /*
*/

Codeforces 1111D Destroy the Colony 退背包 (看题解)的更多相关文章

  1. Codeforces1111D Destroy the Colony 退背包+组合数

    Codeforces1111D 退背包+组合数 D. Destroy the Colony Description: There is a colony of villains with severa ...

  2. CF - 1111D Destroy the Colony DP

    题目传送门 题意: 这个题目真的是最近遇到的最难读. 有一个长度n的字符串,每一位字符都代表的是该种种类的敌人. 现在如果一个序列合法的话,就是同一种种类的敌人都在字符串的左半边或者右半边. 现在有q ...

  3. Codeforces 765F Souvenirs 线段树 + 主席树 (看题解)

    Souvenirs 我们将询问离线, 我们从左往右加元素, 如果当前的位置为 i ,用一棵线段树保存区间[x, i]的答案, 每次更新完, 遍历R位于 i 的询问更新答案. 我们先考虑最暴力的做法, ...

  4. Codeforces 311D Interval Cubing 数学 + 线段树 (看题解)

    Interval Cubing 这种数学题谁顶得住啊. 因为 (3 ^ 48) % (mod - 1)为 1 , 所以48个一个循环节, 用线段树直接维护. #include<bits/stdc ...

  5. Codeforces 498B Name That Tune 概率dp (看题解)

    Name That Tune 刚开始我用前缀积优化dp, 精度炸炸的. 我们可以用f[ i ][ j ] 来推出f[ i ][ j + 1 ], 记得加加减减仔细一些... #include<b ...

  6. 【Codeforces1111D_CF1111D】Destroy the Colony(退背包_组合数学)

    题目: Codeforces1111D 翻译: [已提交至洛谷CF1111D] 有一个恶棍的聚居地由几个排成一排的洞穴组成,每一个洞穴恰好住着一个恶棍. 每种聚居地的分配方案可以记作一个长为偶数的字符 ...

  7. Codeforces 1111D(退背包、排列组合)

    要点 优质题解 因为只有某type坏人全部分布在同一撇时,才能一次消灭.所以题目安排完毕后一定是type(x)和type(y)占一半,其余占另一半. 实际情况只有52*52种,则预处理答案 枚举某两种 ...

  8. BZOJ.2287.[POJ Challenge]消失之物(退背包)

    BZOJ 洛谷 退背包.和原DP的递推一样,再减去一次递推就行了. f[i][j] = f[i-1][j-w[i]] + f[i-1][j] f[i-1][j] = f[i][j] - f[i-1][ ...

  9. [CF1111D]Destroy the Colony

    题目大意:有一个长度为$n(n\leqslant10^5,n=0\pmod2)$的字符串,字符集大小为$52$,有$q(q\leqslant10^5)$次询问,每次询问第$x,y$个字符在这个字符串的 ...

随机推荐

  1. [PHP]curl上传多文件

    码一下curl上传多文件的行 5.5之前版本的写法 $file = array( 'pic[0]'=>"@E:\\wwwroot\\10003\\temp_56.ini;type=te ...

  2. Android一个自定义的进度环:ProgressChart

    源代码及可执行文件下载地址:http://files.cnblogs.com/rainboy2010/ProgressChart.zip 因项目需要,自己尝试定义了一个进度环,用于显示进度,实现效果如 ...

  3. python-GIL、死锁递归锁及线程补充

    一.GIL介绍 GIL全称 Global Interpreter Lock ,中文解释为全局解释器锁.它并不是Python的特性,而是在实现python的主流Cpython解释器时所引入的一个概念,G ...

  4. 洛谷P4451 [国家集训队]整数的lqp拆分 [生成函数]

    传送门 题意简述:语文不好不会写,自己看吧 思路如此精妙,代码如此简洁,实是锻炼思维水经验之好题 这种题当然是一眼DP啦. 设\(dp_n\)为把\(n\)拆分后的答案.为了方便我们设\(dp_0=1 ...

  5. centos忘记密码

    1.启动时按上下箭头,然后按e进入进入编辑模式 2.上下箭头切换在选择 linux ...这行在末尾输入 LANG=en_US.UTF-8 init=/bin/sh 然后按 ctrl+x 进行引导 3 ...

  6. dubbo源码之Directory与LoadBalance

    Directory: 集群目录服务Directory, 代表多个Invoker, 可以看成List<Invoker>,它的值可能是动态变化的比如注册中心推送变更.集群选择调用服务时通过目录 ...

  7. 单击列表行前边的checkbox被选中,再单击,取消选中

    需求描述:单击datatabl的一行数据,前边的checkbox被勾选上,再次点击,选中取消,第一次碰到这种需求,不过呢也很实用,简单记录一下 代码: //html代码<tr class=&qu ...

  8. 3种vue路由传参的基本模式

    路由是连接各个页面的桥梁,而参数在其中扮演者异常重要的角色,在一定意义上,决定着两座桥梁是否能够连接成功. 在vue路由中,支持3中传参方式. 场景,点击父组件的li元素跳转到子组件中,并携带参数,便 ...

  9. Python字典(Dictionary)

    Python中字典与类表类似,也是可变序列,不过与列表不同,他是无序的可变序列,保存的内容是以键 - 值对的形式存放的.类似我们的新华字典,他可以把拼音和汉字关联起来,通过音节表可以快速的找到想要的字 ...

  10. 登录界面之Axure原型制作

    *****登录界面制作步骤***** 1.背景色:需要设定的背景色不知道色值,可以使用截图工具截取一小块粘贴到axure页面, 点击页面样式中的背景色左上角的取色器点击一下该色块,即可将背景色全部填充 ...