luogu1341

思路

欧拉回路和欧拉路的裸题,首先判断是否存在欧拉路或者欧拉回路。当且仅当途中每个点的度数都为偶数时,存在欧拉回路。当且仅当图中度数为奇数的点的个数为2时,存在欧拉路。如果存在欧拉回路,就可以找一个最小的点开始dfs。如果存在欧拉路,那就只能从度数为奇数的两个点中更小的那个开始dfs。

欧拉回路的dfs过程大概就是一边删边,一边dfs。

如图,dfs的过程大概就是

1-2

2-3

3-6

6-5

5-4

4-1

1入队,返回

4入队,返回

5入队,返回

6-7

7-9

8-10

10-11

11-9

9-6

6入队,返回

9入队,返回

11入队,返回

10入队,返回

8入队,返回

7入队,返回

6入队,返回

3入队,返回

2入队,返回

1入队,结束

此时队列中刚是(1-4-5-6-9-11-10-8-7-6-3-2-1),就是一个合法的欧拉回路了。因为题目中要求按照字典序最小输出序列,所以每次搜索的时候先搜索字典序小的。然后将队列倒序输出才可以。

因为要按字典序从小到大搜索,所以邻接表似乎就有点麻烦了。所以直接用邻接矩阵。

代码

#include<cstdio>
#include<iostream>
using namespace std;
const int N = 1000;
int du[N],e[N][N],ji[N],ans[N*10],ansjs;
char c[5];
void dfs(int u) {
for(int i = 'A';i <= 'z';++i) {
if(!e[u][i]) continue;
e[u][i]--;
e[i][u]--;
dfs(i);
}
ans[++ansjs]=u;
}
int main() {
// freopen("text.in","r",stdin);
int n;
scanf("%d",&n);
for(int i = 1;i <= n;++i) {
scanf("%s",c+1);
e[int(c[1])][int(c[2])]++;
e[int(c[2])][int(c[1])]++;
du[int(c[1])]++;
du[int(c[2])]++;
}
int js=0;
for(int i = 'A';i <= 'z';++i) if(du[i]&1) ji[++js]=i;
if(js != 0 && js != 2) {
puts("No Solution");
return 0;
}
int s=1000;
for(int i = 'A';i <= 'z';++i) {
if(!du[i]) continue;
if(js == 0) s=min(s,i);
else if(du[i]&1) s=min(s,i);
}
dfs(s);
for(int i = ansjs;i >= 1;--i)
printf("%c",ans[i]);
return 0;
}

[luogu1341][无序字母对]的更多相关文章

  1. [luogu1341]无序字母对【欧拉回路】

    题目描述 给定n个各不相同的无序字母对(区分大小写,无序即字母对中的两个字母可以位置颠倒).请构造一个有n+1个字母的字符串使得每个字母对都在这个字符串中出现. 分析 欧拉回路的模板题. 暴力删边欧拉 ...

  2. [Luogu1341]无序字母对(欧拉回路)

    按题意给定字符串建无向图,找欧拉回路 按照定义,当没有奇数度点或者只有2个奇数度点时才有欧拉回路 Code #include <cstdio> #include <algorithm ...

  3. 洛谷P1341 无序字母对[无向图欧拉路]

    题目描述 给定n个各不相同的无序字母对(区分大小写,无序即字母对中的两个字母可以位置颠倒).请构造一个有n+1个字母的字符串使得每个字母对都在这个字符串中出现. 输入输出格式 输入格式: 第一行输入一 ...

  4. 洛谷 P1341 无序字母对 Label:欧拉路 一笔画

    题目描述 给定n个各不相同的无序字母对(区分大小写,无序即字母对中的两个字母可以位置颠倒).请构造一个有n+1个字母的字符串使得每个字母对都在这个字符串中出现. 输入输出格式 输入格式: 第一行输入一 ...

  5. P1341 无序字母对 欧拉回路

    题目描述 给定n个各不相同的无序字母对(区分大小写,无序即字母对中的两个字母可以位置颠倒).请构造一个有n+1个字母的字符串使得每个字母对都在这个字符串中出现. 输入输出格式 输入格式: 第一行输入一 ...

  6. P1341 无序字母对

    题目描述 给定n个各不相同的无序字母对(区分大小写,无序即字母对中的两个字母可以位置颠倒).请构造一个有n+1个字母的字符串使得每个字母对都在这个字符串中出现. 输入输出格式 输入格式: 第一行输入一 ...

  7. 【洛谷P1341】无序字母对

    题目大意:给定 n 个各不相同的无序字母对(区分大小写,无序即字母对中的两个字母可以位置颠倒).请构造一个有 n+1 个字母的字符串使得每个字母对都在这个字符串中出现. 题解:每个无需字母对可以看成无 ...

  8. 洛谷 P1341 无序字母对 解题报告

    P1341 无序字母对 题目描述 给定n个各不相同的无序字母对(区分大小写,无序即字母对中的两个字母可以位置颠倒).请构造一个有n+1个字母的字符串使得每个字母对都在这个字符串中出现. 输入输出格式 ...

  9. 无序字母对 character

    无序字母对 character 题目描述 给定n个各不相同的无序字母对(区分大小写,无序即字母对中的两个字母可以位置颠倒).请构造一个有n+1个字母的字符串使得每个字母对都在这个字符串中出现. 输入 ...

随机推荐

  1. CLOUD常用表

    采购采购订单(t_PUR_POOrder, t_PUR_POOrderEntry)-收料通知单(T_PUR_Receive,T_PUR_ReceiveEntry)-采购入库单(T_STK_INSTOC ...

  2. 剑指offer(14)

    题目: 操作给定的二叉树,将其变换为源二叉树的镜像. 思路: 这里有个细节,我们发现,6节点的子节点在操作之后并没有发生变化,所以等会我们在交换的时候,交换的不是节点的数值,而是整个节点. 另外我们进 ...

  3. Decoder is not a @Sharable handler, so can't be added or removed multiple times

    Decoder is not a @Sharable handler, so can't be added or removed multiple times final MyMessageDecod ...

  4. 销售合同金额数据从Excel导入

    一.业务需求 1.新增了销售合同金额的字段,但是老数据没有这个字段:所以销售合同金额从销售合同附件的各品种金额之和. 2.制作好excel字段模板,将此模板发送给销售业务部门来统计并完成excel表格 ...

  5. 替换JDK 对eclipse的影响?

    问题  替换原有的JDK 对 eclipse有影响么? 之前用的eclipse是32位的,我的电脑是64位的,装的JDK是也是32位的,所以不影响使用! 但是,前两天装了一个ideal,新配置了一个9 ...

  6. Mybatis之collection嵌套查询mapper文件写法

    mapper.xml写法举例 <?xml version="1.0" encoding="UTF-8" ?> <!DOCTYPE mapper ...

  7. vue-cli: render:h => h(App)是什么意思

    import Vue from 'vue' import App from './App.vue' Vue.config.productionTip = false new Vue({ render: ...

  8. Python——Label控件说明

    Anchor :   标签中文本的位置: background(bg)foreground(fg) :背景色:前景色: borderwidth(bd) :边框宽度: width  .height   ...

  9. SQL字段类型bit 查询时注意

    sql 查询时  字段=1 或 字段=0 c# 里也是

  10. ASP.NET Web API Basic Identity 中的基本身份验证

    缺点 用户凭证在请求中发送. 凭据作为明文发送. 每个请求都会发送凭据. 无法注销,除非结束浏览器会话. 易于跨站点请求伪造(CSRF); 需要反CSRF措施. 优点 互联网标准. 受所有主要浏览器支 ...