题目大意:求 $$\sum\limits_{i=1}a\sum\limits_{j=1}b[gcd(i,j)=c]$$

题解:学会了狄利克雷卷积。

\[\epsilon=\mu \ast 1
\]

将艾弗森表达式转化成卷积的形式,在调换求和顺序,消去不必要的和式。最后利用除法分块+预处理的莫比乌斯函数前缀和在 \(O(\sqrt n)\) 时间内单次回答询问。

代码如下

#include <bits/stdc++.h>

using namespace std;

typedef long long LL;

const int maxn = 5e4 + 10;

int mu[maxn], sum[maxn];
vector<int> primes;
bool vis[maxn]; void RunLinearSieve() {
mu[1] = 1, vis[1] = 1;
int n = 5e4;
for (int i = 2; i <= n; i++) {
if (!vis[i]) {
primes.push_back(i);
mu[i] = -1;
}
for (int j = 0; i * primes[j] <= n; j++) {
vis[i * primes[j]] = 1;
if (i % primes[j] == 0) {
mu[i * primes[j]] = 0;
break;
} else {
mu[i * primes[j]] = -mu[i];
}
}
}
for (int i = 1; i <= n; i++) {
sum[i] = sum[i - 1] + mu[i];
}
} int main() {
ios::sync_with_stdio(false);
cin.tie(0), cout.tie(0);
int T;
cin >> T;
RunLinearSieve();
while (T--) {
LL a, b, c;
cin >> a >> b >> c;
a /= c, b /= c;
LL range = min(a, b);
LL ans = 0;
for (int i = 1; i <= range; i++) {
int j = min(a / (a / i), b / (b / i));
ans += (LL)(sum[j] - sum[i - 1]) * (a / i) * (b / i);
i = j;
}
cout << ans << endl;
}
return 0;
}

【洛谷P3455】ZAP-Queries的更多相关文章

  1. 洛谷 [P3455] ZAP

    莫比乌斯函数 #include <iostream> #include <cstdio> #include <cmath> #include <cstring ...

  2. 莫比乌斯反演学习笔记+[POI2007]Zap(洛谷P3455,BZOJ1101)

    先看一道例题:[POI2007]Zap BZOJ 洛谷 题目大意:$T$ 组数据,求 $\sum^n_{i=1}\sum^m_{j=1}[gcd(i,j)=k]$ $1\leq T\leq 50000 ...

  3. 【刷题】洛谷 P3455 [POI2007]ZAP-Queries

    题目描述 Byteasar the Cryptographer works on breaking the code of BSA (Byteotian Security Agency). He ha ...

  4. 洛谷 P3455 [POI2007]ZAP-Queries || 洛谷P2522,bzoj2301

    https://www.luogu.org/problemnew/show/P3455 就是https://www.cnblogs.com/hehe54321/p/9315244.html里面的方法2 ...

  5. 洛谷 P3455 [POI2007]ZAP-Queries (莫比乌斯函数)

    题目链接:P3455 [POI2007]ZAP-Queries 题意 给定 \(a,b,d\),求 \(\sum_{x=1}^{a} \sum_{y=1}^{b}[gcd(x, y) = d]\). ...

  6. 洛谷 P3455&BZOJ1101 【[POI2007]ZAP-Queries】

    这应该是入坑莫比乌斯反演的第一道题了吧 其实题目让我们求的东西很简单,就是 \[ ans=\sum_{i=1}^{a}\sum_{j=1}^{b}\left [ gcd(i,j)=k \right ] ...

  7. 洛谷P3455 ZAP-Queries [POI2007] 莫比乌斯反演+数论分块

    正解:莫比乌斯反演 解题报告: 传送门! 首先这题刚看到就很,莫比乌斯反演嘛,和我前面写了题解的那个一模一样的,所以这儿就不讲这前边的做法辣QAQ 但是这样儿还有个问题,就现在已知我每次都是要O(n) ...

  8. 洛谷P3455 [POI2007]ZAP-Queries(莫比乌斯反演)

    传送门 设$$f(k)=\sum_{i=1}^{a}\sum_{j=1}^{b}[gcd(i,j)=k]$$ $$g(n)=\sum_{n|k}f(k)=\lfloor\frac{a}{n}\rflo ...

  9. 洛谷P3455 [POI2007]ZAP-Queries

    题目大意: 给定\(n,m,k,\) 求 \[\sum\limits_{x=1}^n\sum\limits_{y=1}^m[gcd(x,y)==k]\] 莫比乌斯反演入门题,先进行一步转化,将每个\( ...

随机推荐

  1. python学习笔记(10)--组合数据类型(序列类型)

    序列是具有先后关系的一组数据,是一维元素向量,元素类型可以不同,类似数学元素序列,元素间由序号引导,通过下标访问序列的特定元素.序列类型是一个基类类型,字符串类型,元祖类型,列表类型都属于序列类型. ...

  2. python RSA 加密与签名

    PyCrypto装起来就简单多了,我是直接 sudo easy_install pycrypto 直接搞定的 先生成rsa的公私钥:打开控制台,输入 openssl 再输入 genrsa -out p ...

  3. qtp 自动化测试--点滴 菜单没有了,有些控件运行时找不到

    test项目页签下-没有了 菜单栏:file edit view insert 看不到了 1 解决:在startpage标签下-tool-option-点击 restore layout-确定 2 菜 ...

  4. Delphi MDI 子窗体的创建和销毁 [zhuan]

    1.如果要创建一个mdi child,先看是否有这个child 存在,如果有,则用它,如果没有再创建 //该函数判断MDI 子窗体是否存在,再进行创建和显示function isInclude(for ...

  5. python 三目运算符

    格式: true_res if condition else false_res Meto 1: Meto 2: >>> x = 2 >>> x+1 if x!=1 ...

  6. vscode git设置远程仓库码云

    https://www.cnblogs.com/klsw/p/9080041.html

  7. ADO工具类

    using System;using System.Collections.Generic;using System.Linq;using System.Text;using System.Data; ...

  8. Docker最全教程——从理论到实战

    Docker最全教程——从理论到实战(一) Docker最全教程——从理论到实战(二) Docker最全教程——从理论到实战(三) Docker最全教程——从理论到实战(四) Docker最全教程—— ...

  9. react 自我小计

    1.react中的方法调用,在onClick事件中不需要加小括号. <button onClick={this.show}>方法的调用</button> show(){ con ...

  10. 开始一个简单的ASP.NET Web API 2 (C#)

    创建一个Web API 项目 在本教程中,你将使用ASP.NET Web API 来创建一个web API 并返回产品列表. 网页前端使用jQuery 显示结果. 选择ASP.NET Web Appl ...