This time, you are supposed to find A*B where A and B are two polynomials.

Input Specification:

Each input file contains one test case. Each case occupies 2 lines, and each line contains the information of a polynomial: K N1 aN1 N2 aN2 ... NK aNK, where K is the number of nonzero terms in the polynomial, Ni and aNi (i=1, 2, ..., K) are the exponents and coefficients, respectively. It is given that 1 <= K <= 10, 0 <= NK < ... < N2 < N1 <=1000.

Output Specification:

For each test case you should output the product of A and B in one line, with the same format as the input. Notice that there must be NO extra space at the end of each line. Please be accurate up to 1 decimal place.

Sample Input

2 1 2.4 0 3.2
2 2 1.5 1 0.5

Sample Output

3 3 3.6 2 6.0 1 1.6
 #include<cstdio>
#include<iostream>
using namespace std;
int main(){
int K, n, count = ;
double a, poly1[] = {}, re[] = {};
scanf("%d", &K);
for(int i = ; i < K; i++){
scanf("%d%lf", &n, &a);
poly1[n] = a;
}
scanf("%d", &K);
for(int i = ; i < K; i++){
scanf("%d%lf", &n, &a);
for(int j = ; j < ; j++)
re[n + j] = re[n + j] + poly1[j] * a;
}
for(int i = ; i >= ; i--){
if(re[i] != )
count++;
}
printf("%d", count);
for(int i = ; i >= ; i--){
if(re[i] != )
printf(" %d %.1lf", i, re[i]);
}
cin >> K;
return ;
}

总结:

1、指数为1000的多项式乘法,结果最高为2000次幂。

2、为减少时间复杂度,可以将第一个多项式存储,第二个不存。第二个多项式边读入边直接遍历poly1并做乘法。还可以将两个多项式的系数与指数分别开数组存下来以减小复杂度。

A1009. Product of Polynomials的更多相关文章

  1. A1009 Product of Polynomials (25)(25 分)

    A1009 Product of Polynomials (25)(25 分) This time, you are supposed to find A*B where A and B are tw ...

  2. PAT A1009 Product of Polynomials (25 分)——浮点,结构体数组

    This time, you are supposed to find A×B where A and B are two polynomials. Input Specification: Each ...

  3. PAT甲级——A1009 Product of Polynomials

    This time, you are supposed to find A×B where A and B are two polynomials. Input Specification: Each ...

  4. PAT A1009 Product of Polynomials(25)

    课本AC代码 #include <cstdio> struct Poly { int exp;//指数 double cof; } poly[1001];//第一个多项式 double a ...

  5. 1009 Product of Polynomials (25 分)

    1009 Product of Polynomials (25 分) This time, you are supposed to find A×B where A and B are two pol ...

  6. PAT1009:Product of Polynomials

    1009. Product of Polynomials (25) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yu ...

  7. PAT 1009 Product of Polynomials

    1009 Product of Polynomials (25 分)   This time, you are supposed to find A×B where A and B are two p ...

  8. PTA (Advanced Level) 1009 Product of Polynomials

    1009 Product of Polynomials This time, you are supposed to find A×B where A and B are two polynomial ...

  9. PAT Product of Polynomials[一般]

    1009 Product of Polynomials (25)(25 分) This time, you are supposed to find A*B where A and B are two ...

随机推荐

  1. Object.defineProperties()与Proxy对象代理

    Object.defineProperties() 了不起啊..vue.js通过它实现双向绑定的 Object.defineProperties(obj,props) 方法直接在一个对象上定义新的属性 ...

  2. python学习笔记(7)--循环语句

    循环语句如下: for i in range(start, end): //注意 前闭后开 coding for i in range(m,n,k): coding for c in s: codin ...

  3. Java权限访问修饰符

    私有的,以 private 修饰符指定,在同一类内可见. 默认的,也称为 default,在同一包内可见,不使用任何修饰符. 受保护的,以 protected 修饰符指定,对同一包内的类和所有子类可见 ...

  4. 四、K8S

    一.查看日志 journalctl -xeu kubelet

  5. Eclipse配置C++时的三个关键环境变量

    ECLIPSE下载很简单,然后装上MinGW,安装就完成了,关键是要配置三个环境变量 include——C:\MinGW\include lib——C:\MinGW\lib path——C:\MinG ...

  6. @ControllerAdvice + @ExceptionHandler 全局处理 Controller 层异常==》记录

    对于与数据库相关的 Spring MVC 项目,我们通常会把 事务 配置在 Service层,当数据库操作失败时让 Service 层抛出运行时异常,Spring 事物管理器就会进行回滚. 如此一来, ...

  7. LTI系统对WSS Processes的作用

    本文主要专注讨论LTI系统对WSS Process的影响.WSS Process的主要特性有mean以及correlation,其中correlation特性在滤波器设计,信号检测,信号预测以及系统识 ...

  8. .net core 2.0 MVC区域

    区域 创建对应的目录结构 Areas System Controllers Views 在Startup.cs 注册路由 在控制器上方加上`[Area("system")]` // ...

  9. 解决面板里没有network manager图标的问题 ,也就是在桌面环境下,没有那个网络图标

    在安装好了桌面之后,竟然发现没有那个连接网络的图标,本来想连接无限网络.可是.......如果去手动命令行下去配置这个连接wifi有些麻烦,所以我还是去找解决办法了 我执行了一条命令就解决了 gcon ...

  10. BZOJ4519[Cqoi2016]不同的最小割——最小割树+map

    题目描述 学过图论的同学都知道最小割的概念:对于一个图,某个对图中结点的划分将图中所有结点分成 两个部分,如果结点s,t不在同一个部分中,则称这个划分是关于s,t的割.对于带权图来说,将 所有顶点处在 ...