Til the Cows Come Home
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 46727   Accepted: 15899

Description

Bessie is out in the field and wants to get back to the barn to get as much sleep as possible before Farmer John wakes her for the morning milking. Bessie needs her beauty sleep, so she wants to get back as quickly as possible.

Farmer John's field has N (2 <= N <= 1000) landmarks in it, uniquely numbered 1..N. Landmark 1 is the barn; the apple tree grove in which Bessie stands all day is landmark N. Cows travel in the field using T (1 <= T <= 2000) bidirectional cow-trails of various lengths between the landmarks. Bessie is not confident of her navigation ability, so she always stays on a trail from its start to its end once she starts it.

Given the trails between the landmarks, determine the minimum distance Bessie must walk to get back to the barn. It is guaranteed that some such route exists.

Input

* Line 1: Two integers: T and N

* Lines 2..T+1: Each line describes a trail as three space-separated integers. The first two integers are the landmarks between which the trail travels. The third integer is the length of the trail, range 1..100.

Output

* Line 1: A single integer, the minimum distance that Bessie must travel to get from landmark N to landmark 1.

Sample Input

5 5
1 2 20
2 3 30
3 4 20
4 5 20
1 5 100

Sample Output

90

Hint

INPUT DETAILS:

There are five landmarks.

OUTPUT DETAILS:

Bessie can get home by following trails 4, 3, 2, and 1.

Dijkstra()

#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
#include<algorithm>
using namespace std;
typedef __int64 LL;
const int maxn = 2005;
const int INF = 0x3f3f3f3f;
struct Edge{
	int u,v,next;
	LL w;
	bool operator < (const Edge & a)const
	{
		return w > a.w;
	}
}edge[maxn<<1] ;
int tot = 0,head[maxn];
bool vis[maxn];
LL dis[maxn];

void addedge(int u,int v,LL w)
{
	edge[tot] = (Edge){u,v,head[u],w
	};
	head[u] = tot++;
}

void Dijkstra()
{
	priority_queue<Edge>que;
	Edge p;
	memset(dis,INF,sizeof(dis));
	memset(vis,false,sizeof(vis));
	p.v = 1;
	que.push(p);
	dis[1] = 0;
	while (!que.empty())
	{
		p = que.top();
		que.pop();
		int u = p.v;
		if (vis[u])	continue;
		vis[u] = true;
		for (int i = head[u];i != -1;i = edge[i].next)
		{
			int v = edge[i].v;
			if (dis[u] + edge[i].w < dis[v])
			{
				dis[v] = dis[u] + edge[i].w;
				p.u = u,p.v = v,p.w = dis[v];
				que.push(p);
			}
		}
	}
}

int main()
{
	//freopen("input.txt","r",stdin);
	int T,N,u,v;
	LL w;
	memset(head,-1,sizeof(head));
	scanf("%d%d",&T,&N);
	for (int i = 0;i < T;i++)
	{
		scanf("%d%d%I64d",&u,&v,&w);
		addedge(u,v,w);
		addedge(v,u,w);
	}
	Dijkstra();
	printf("%I64d\n",dis[N]);
	return 0;
} 

spfa()

#include<cstdio>
#include<cstring>
#include<iostream>
#include<queue>
#include<algorithm>
using namespace std;
const int INF =  0x3f3f3f3f;
const int MAX_N = 1005;
bool flag[MAX_N];
int  edge[MAX_N][MAX_N];

void spfa(int n)
{
	int dis[MAX_N];
	queue<int>que;
	memset(flag,false,sizeof(flag));
	memset(dis,0x3f3f3f3f,sizeof(dis));

	dis[1] = 0;
	que.push(1);
	flag[1] = true;

	while (!que.empty())
	{
		int curval = que.front();
		que.pop();
		flag[curval] = false;

		for (int i = 1;i <= n;i++)
		{
			if (dis[curval] < dis[i] - edge[curval][i])
			{
				dis[i] = dis[curval] + edge[curval][i];

				if (!flag[i])
				{
					que.push(i);
					flag[i] = true;
				}
			}
		}
	}
	printf("%d\n",dis[n]);
}

int main()
{
	int N,T;
	while (~scanf("%d%d",&T,&N))
	{
		int u,v,w;
		for (int i = 1;i <= N;i++)
		{
			for (int j = 1;j <= i;j++)
			{
				if (i == j) edge[i][j] = 0;
				else edge [i][j] = edge[j][i] = INF;
			}
		}
		for (int i = 0;i < T;i++)
		{
			scanf("%d%d%d",&u,&v,&w);
			/*if (w < edge[u][v])
			{
				edge[u][v] = edge[v][u] = w;
			}*/
			edge[u][v] = edge[v][u] = min(w,edge[u][v]);
		}
		spfa(N);
	}
	return 0;
}

  

POJ 2387 Til the Cows Come Home(最短路 Dijkstra/spfa)的更多相关文章

  1. POJ 2387 Til the Cows Come Home(模板——Dijkstra算法)

    题目连接: http://poj.org/problem?id=2387 Description Bessie is out in the field and wants to get back to ...

  2. POJ 2387 Til the Cows Come Home(最短路模板)

    题目链接:http://poj.org/problem?id=2387 题意:有n个城市点,m条边,求n到1的最短路径.n<=1000; m<=2000 就是一个标准的最短路模板. #in ...

  3. POJ 2387 Til the Cows Come Home --最短路模板题

    Dijkstra模板题,也可以用Floyd算法. 关于Dijkstra算法有两种写法,只有一点细节不同,思想是一样的. 写法1: #include <iostream> #include ...

  4. POJ 2387 Til the Cows Come Home (图论,最短路径)

    POJ 2387 Til the Cows Come Home (图论,最短路径) Description Bessie is out in the field and wants to get ba ...

  5. POJ.2387 Til the Cows Come Home (SPFA)

    POJ.2387 Til the Cows Come Home (SPFA) 题意分析 首先给出T和N,T代表边的数量,N代表图中点的数量 图中边是双向边,并不清楚是否有重边,我按有重边写的. 直接跑 ...

  6. Til the Cows Come Home 最短路Dijkstra+bellman(普通+优化)

    Til the Cows Come Home 最短路Dijkstra+bellman(普通+优化) 贝西在田里,想在农夫约翰叫醒她早上挤奶之前回到谷仓尽可能多地睡一觉.贝西需要她的美梦,所以她想尽快回 ...

  7. POJ 2387 Til the Cows Come Home

    题目链接:http://poj.org/problem?id=2387 Til the Cows Come Home Time Limit: 1000MS   Memory Limit: 65536K ...

  8. 怒学三算法 POJ 2387 Til the Cows Come Home (Bellman_Ford || Dijkstra || SPFA)

    Til the Cows Come Home Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 33015   Accepted ...

  9. POJ 2387 Til the Cows Come Home (最短路 dijkstra)

    Til the Cows Come Home 题目链接: http://acm.hust.edu.cn/vjudge/contest/66569#problem/A Description Bessi ...

随机推荐

  1. canvas 制作flappy bird(像素小鸟)全流程

    flappy bird制作全流程: 一.前言 像素小鸟这个简单的游戏于2014年在网络上爆红,游戏上线一段时间内appleStore上的下载量一度达到5000万次,风靡一时, 近年来移动web的普及为 ...

  2. css3 transition属性

    最近打算学习css3知识,觉得css3写出来的效果好炫好酷,之前一直想要学习来着.可能之前的决心,毅力,耐心不够,所以想要重整起来,放下浮躁的心态,一步一个脚印,踏踏实实的来学习. 首先学习的是css ...

  3. 便于开发的Helper类

    一.将config封装实体层: 例子config: <?xml version="1.0" encoding="utf-8" ?> <Sett ...

  4. MySQL可视化软件Work Bench导出导入数据库

    首先打开你的work bench,输入你的密码进入主页面 A:导入数据库 在Schemas空白处右键选择Create~:建立一个数据库,然后就可以导入你的sql文件了 File-->Open S ...

  5. 无刷新读取数据库 (ajax)

    <html> <head> <script type="text/javascript"> function loadXMLDoc() { va ...

  6. SQL中EXISTS的使用

    1.简介 不相关子查询:子查询的查询条件不依赖于父查询的称为不相关子查询. 相关子查询:子查询的查询条件依赖于外层父查询的某个属性值的称为相关子查询,带EXISTS 的子查询就是相关子查询 EXIST ...

  7. Linux Shell脚本逻辑操作符简介

    在写程序时,会用到条件判断,测试条件是否成立.很多时候,判断条件是多个的,这个时候需要用到逻辑操作符.shell脚本中常用的有哪些逻辑操作符呢? 1.逻辑与: -a 格式: conditon1 -a ...

  8. Linux 入门之修改主机名

    vi /etc/hosts 修改 local.domain 为自己的主机名比如 compute

  9. .NET和JAVA中BYTE的区别以及JAVA中“DES/CBC/PKCS5PADDING” 加密解密在.NET中的实现

    场景:java 作为客户端调用已有的一个.net写的server的webservice,输入string,返回字节数组. 问题:返回的值不是自己想要的,跟.net客户端直接调用总是有差距 分析:平台不 ...

  10. codevs 1082 线段树区间求和

    codevs 1082 线段树练习3 链接:http://codevs.cn/problem/1082/ sumv是维护求和的线段树,addv是标记这歌节点所在区间还需要加上的值. 我的线段树写法在运 ...