这些天看了一些关于采样矩阵(大概是这么翻译的)的论文,简单做个总结。

  • FAST MONTE CARLO ALGORITHMS FOR MATRICES I: APPROXIMATING MATRIX MULTIPLICATION

算法如下:

目的是为了毕竟矩阵的乘积AB, 以CR来替代。

其中右上角带有i_t的A表示A的第i_t列,右下角带有i_t的B表示B的第i_t行。

关于 c 的选择,以及误差的估计,请回看论文。

下面是一个小小的测试:

代码:

import numpy as np

def Generate_P(A, B): #生成概率P
try:
n1 = len(A[1,:])
n2 = len(B[:,1])
if n1 == n2:
n = n1
else:
print('Bad matrices')
return 0
except:
print('The matrices are not fit...')
A_New = np.square(A)
B_New = np.square(B)
P_A = np.array([np.sqrt(np.sum(A_New[:,i])) for i in range(n)])
P_B = np.array([np.sqrt(np.sum(B_New[i,:])) for i in range(n)])
P = P_A * P_B / (np.sum(P_A * P_B))
return P def Generate_S(n, c, P): #生成采样矩阵S 简化了一下算法
S = np.zeros((n, c))
T = np.random.choice(np.array([i for i in range(n)]), size = c, replace = True, p = P)
for i in range(c):
S[T[i], i] = 1 / np.sqrt(c * P[T[i]]) return S def Summary(times, n, c, P, A_F, B_F, AB): #总结和分析
print('{0:^15} {1:^15} {2:^15} {3:^15} {4:^15} {5:^15} {6:^15}'.format('A_F', 'B_F', 'NEW_F', 'A_F * B_F', 'AB_F', 'RATIO', 'RATIO2'))
print('{0:-<15} {0:-<15} {0:-<15} {0:-<15} {0:-<15} {0:-<15} {0:-<15}'.format(''))
A_F_B_F = A_F * B_F
AB_F = np.sqrt(np.sum(np.square(AB)))
Max = -1
Min = 99999999999
Max2 = -1
Min2 = 99999999999
Max_NEW_F = 0
Min_NEW_F = 0
Mean_NEW_F = 0
Mean_ratio = 0
Mean_ratio2 = 0
for i in range(times):
S = Generate_S(n, c, P)
CR = np.dot(A.dot(S), (S.T).dot(B))
NEW = AB - CR
NEW_F = np.sqrt(np.sum(np.square(NEW)))
ratio = NEW_F / A_F_B_F
ratio2 = NEW_F / AB_F
Mean_NEW_F += NEW_F
Mean_ratio += ratio
Mean_ratio2 += ratio2
if ratio > Max:
Max = ratio
Max2 = ratio2
Max_NEW_F = NEW_F
if ratio < Min:
Min = ratio
Min2 = ratio2
Min_NEW_F = NEW_F
print('{0:^15.5f} {1:^15.5f} {2:^15.5f} {3:^15.5f} {4:^15.5f} {5:^15.3%} {6:^15.3%}'.format(A_F, B_F, NEW_F, A_F_B_F, AB_F, ratio, ratio2))
Mean_NEW_F = Mean_NEW_F / times
Mean_ratio = Mean_ratio / times
Mean_ratio2 = Mean_ratio2 / times
print('{0:-<15} {0:-<15} {0:-<15} {0:-<15} {0:-<15} {0:-<15} {0:-<15}'.format(''))
print('{0:^15.5f} {1:^15.5f} {2:^15.5f} {3:^15.5f} {4:^15.5f} {5:^15.3%} {6:^15.3%}'.format(A_F, B_F, Mean_NEW_F, A_F_B_F, AB_F, Mean_ratio, Mean_ratio2))
print('{0:-<15} {0:-<15} {0:-<15} {0:-<15} {0:-<15} {0:-<15} {0:-<15}'.format(''))
print('Count: {0} times'.format(times))
print('Max_ratio: {0:<15.3%} Min_ratio: {1:<15.3%}'.format(Max, Min))
print('Max_ratio2: {0:<15.3%} Min_ratio2: {1:<15.3%}'.format(Max2, Min2))
print('Max_NEW_F: {0:<15.5f} Min_NEW_F: {1:<15.5f}'.format(Max_NEW_F, Min_NEW_F)) #下面是关于矩阵行列的一些参数,我是采用均匀分布产生的矩阵
m = 47
n = 120
p = 55
A = np.array([[np.random.rand() * 100 for j in range(n)] for i in range(m)])
B = np.array([[np.random.rand() * 100 for j in range(p)] for i in range(n)]) #构建c的一些参数 这个得参考论文
Thelta = 1/4
Belta = 1
Yita = 1 + np.sqrt((8/Belta * np.log(1/Thelta)))
e = 1/5
c = int(1 / (Belta * e ** 2)) + 1
P = Generate_P(A, B) #结果分析
AB = A.dot(B)
A_F = np.sqrt(np.sum(np.square(A)))
B_F = np.sqrt(np.sum(np.square(B)))
times = 1000
Summary(times, n, c, P, A_F, B_F, AB)

粗略的结果:

用了原矩阵的一半的维度,代价是约17%的误差。

用正态分布生成矩阵的时候,发现,如果是标准正态分布,效果很差,我猜是由计算机舍入误差引起的,这样的采样的性能不好。当均值增加的时候,和”均匀分布“差不多,甚至更优(F范数的意义上)。

补充:

















Sampling Matrix的更多相关文章

  1. 【NLP】Conditional Language Modeling with Attention

    Review: Conditional LMs Note that, in the Encoder part, we reverse the input to the ‘RNN’ and it per ...

  2. Sampling Distributions and Central Limit Theorem in R(转)

    The Central Limit Theorem (CLT), and the concept of the sampling distribution, are critical for unde ...

  3. [LeetCode] Random Flip Matrix 随机翻转矩阵

    You are given the number of rows n_rows and number of columns n_cols of a 2D binary matrix where all ...

  4. 【RS】Sparse Probabilistic Matrix Factorization by Laplace Distribution for Collaborative Filtering - 基于拉普拉斯分布的稀疏概率矩阵分解协同过滤

    [论文标题]Sparse Probabilistic Matrix Factorization by Laplace Distribution for Collaborative Filtering  ...

  5. 470. Implement Rand10() Using Rand7() (拒绝采样Reject Sampling)

    1. 问题 已提供一个Rand7()的API可以随机生成1到7的数字,使用Rand7实现Rand10,Rand10可以随机生成1到10的数字. 2. 思路 简单说: (1)通过(Rand N - 1) ...

  6. [Python] 01 - Number and Matrix

    故事背景 一.大纲 如下,chapter4 是个概览,之后才是具体讲解. 二. 编译过程 Ref: http://www.dsf.unica.it/~fiore/LearningPython.pdf

  7. 目录:Matrix Differential Calculus with Applications in Statistics and Econometrics,3rd_[Magnus2019]

    目录:Matrix Differential Calculus with Applications in Statistics and Econometrics,3rd_[Magnus2019] Ti ...

  8. 【论文笔记】SamWalker: Social Recommendation with Informative Sampling Strategy

    SamWalker: Social Recommendation with Informative Sampling Strategy Authors: Jiawei Chen, Can Wang, ...

  9. angular2系列教程(十一)路由嵌套、路由生命周期、matrix URL notation

    今天我们要讲的是ng2的路由的第二部分,包括路由嵌套.路由生命周期等知识点. 例子 例子仍然是上节课的例子:

随机推荐

  1. 利用开机账户登录“轻松访问”创建Windows后门

    利用开机账户登录“轻松访问”创建Windows后门 实验原理: 利用登录账户界面的“轻松访问”中的“放大镜”,把它替换为cmd.exe程序,实现在不登录的情况下打开命令提示符,并进行一些操作(打开的c ...

  2. JavaScript -- 时光流逝(一):数据类型,变量,类型转换,函数

    JavaScript -- 知识点回顾篇(一):数据类型,变量,类型转换,函数 1. 数据类型 Boolean:值类型,布尔(逻辑)只能有两个值:true 或 false. Number:值类型,Ja ...

  3. Hadoop2.7.6_01_部署

    1. 主机规划 主机名称 外网IP 内网IP 操作系统 备注 安装软件 mini01 10.0.0.11 172.16.1.11 CentOS 7.4 ssh port:22 Hadoop [Name ...

  4. LeetCode算法题-Fizz Buzz(Java实现)

    这是悦乐书的第221次更新,第233篇原创 01 看题和准备 今天介绍的是LeetCode算法题中Easy级别的第88题(顺位题号是412). 编写一个程序,输出从1到n的数字的字符串表示.但对于三的 ...

  5. Redis 的安装 使用 通知事件

    Redis 的安装 使用 介绍: redis是一个key-value存储系统.和Memcached类似,它支持存储的value类型相对更多,包括string.list.set.zset(sorted ...

  6. docker学习笔记(四)-持久化数据,安装docker-compose

    Docker 持久化数据 实战 compose 安装docker-compose

  7. SQLite的原子提交--单文件场景

    3. 单文件提交 我们首先概要说明SQLite在单个数据库文件上为了执行事务的原子提交而采取的步骤.在后面的部分将讨论如何设计文件格式以保护其在断电故障中损坏,以及原子提交在多个数据库上的执行. 3. ...

  8. C#释放资源文件dll或exe

    将程序包含的资源文件释放到硬盘上 1.VS2017-新建  winform(窗体应用)命名为 loader 2.在解决方案管理器中,展开项目loader 在 properties 下面,找到[Reso ...

  9. 关于 chrome canary X64 在 win7 64bit 下面缺少openvr_api.dll的解决方法

    在github上下载openvr_api.dll放到chrome的安装目录下就可以. 其实放到系统目录下最好,以后其他程序要使用的时候也能使用的到. https://github.com/ValveS ...

  10. Linux:Day5 shell编程初步、grep

    bash的基本特性(3) 1.提供了编程环境 程序编程风格: 过程式:以指令为中心,数据服务于指令: 对象式:以数据为中心,指令服务于数据: shell程序:提供了编程能力,解释执行:过程式.解释执行 ...