Sampling Matrix
这些天看了一些关于采样矩阵(大概是这么翻译的)的论文,简单做个总结。
- FAST MONTE CARLO ALGORITHMS FOR MATRICES I: APPROXIMATING MATRIX MULTIPLICATION
算法如下:
目的是为了毕竟矩阵的乘积AB, 以CR来替代。
其中右上角带有i_t的A表示A的第i_t列,右下角带有i_t的B表示B的第i_t行。
关于 c 的选择,以及误差的估计,请回看论文。
下面是一个小小的测试:
代码:
import numpy as np
def Generate_P(A, B): #生成概率P
try:
n1 = len(A[1,:])
n2 = len(B[:,1])
if n1 == n2:
n = n1
else:
print('Bad matrices')
return 0
except:
print('The matrices are not fit...')
A_New = np.square(A)
B_New = np.square(B)
P_A = np.array([np.sqrt(np.sum(A_New[:,i])) for i in range(n)])
P_B = np.array([np.sqrt(np.sum(B_New[i,:])) for i in range(n)])
P = P_A * P_B / (np.sum(P_A * P_B))
return P
def Generate_S(n, c, P): #生成采样矩阵S 简化了一下算法
S = np.zeros((n, c))
T = np.random.choice(np.array([i for i in range(n)]), size = c, replace = True, p = P)
for i in range(c):
S[T[i], i] = 1 / np.sqrt(c * P[T[i]])
return S
def Summary(times, n, c, P, A_F, B_F, AB): #总结和分析
print('{0:^15} {1:^15} {2:^15} {3:^15} {4:^15} {5:^15} {6:^15}'.format('A_F', 'B_F', 'NEW_F', 'A_F * B_F', 'AB_F', 'RATIO', 'RATIO2'))
print('{0:-<15} {0:-<15} {0:-<15} {0:-<15} {0:-<15} {0:-<15} {0:-<15}'.format(''))
A_F_B_F = A_F * B_F
AB_F = np.sqrt(np.sum(np.square(AB)))
Max = -1
Min = 99999999999
Max2 = -1
Min2 = 99999999999
Max_NEW_F = 0
Min_NEW_F = 0
Mean_NEW_F = 0
Mean_ratio = 0
Mean_ratio2 = 0
for i in range(times):
S = Generate_S(n, c, P)
CR = np.dot(A.dot(S), (S.T).dot(B))
NEW = AB - CR
NEW_F = np.sqrt(np.sum(np.square(NEW)))
ratio = NEW_F / A_F_B_F
ratio2 = NEW_F / AB_F
Mean_NEW_F += NEW_F
Mean_ratio += ratio
Mean_ratio2 += ratio2
if ratio > Max:
Max = ratio
Max2 = ratio2
Max_NEW_F = NEW_F
if ratio < Min:
Min = ratio
Min2 = ratio2
Min_NEW_F = NEW_F
print('{0:^15.5f} {1:^15.5f} {2:^15.5f} {3:^15.5f} {4:^15.5f} {5:^15.3%} {6:^15.3%}'.format(A_F, B_F, NEW_F, A_F_B_F, AB_F, ratio, ratio2))
Mean_NEW_F = Mean_NEW_F / times
Mean_ratio = Mean_ratio / times
Mean_ratio2 = Mean_ratio2 / times
print('{0:-<15} {0:-<15} {0:-<15} {0:-<15} {0:-<15} {0:-<15} {0:-<15}'.format(''))
print('{0:^15.5f} {1:^15.5f} {2:^15.5f} {3:^15.5f} {4:^15.5f} {5:^15.3%} {6:^15.3%}'.format(A_F, B_F, Mean_NEW_F, A_F_B_F, AB_F, Mean_ratio, Mean_ratio2))
print('{0:-<15} {0:-<15} {0:-<15} {0:-<15} {0:-<15} {0:-<15} {0:-<15}'.format(''))
print('Count: {0} times'.format(times))
print('Max_ratio: {0:<15.3%} Min_ratio: {1:<15.3%}'.format(Max, Min))
print('Max_ratio2: {0:<15.3%} Min_ratio2: {1:<15.3%}'.format(Max2, Min2))
print('Max_NEW_F: {0:<15.5f} Min_NEW_F: {1:<15.5f}'.format(Max_NEW_F, Min_NEW_F))
#下面是关于矩阵行列的一些参数,我是采用均匀分布产生的矩阵
m = 47
n = 120
p = 55
A = np.array([[np.random.rand() * 100 for j in range(n)] for i in range(m)])
B = np.array([[np.random.rand() * 100 for j in range(p)] for i in range(n)])
#构建c的一些参数 这个得参考论文
Thelta = 1/4
Belta = 1
Yita = 1 + np.sqrt((8/Belta * np.log(1/Thelta)))
e = 1/5
c = int(1 / (Belta * e ** 2)) + 1
P = Generate_P(A, B)
#结果分析
AB = A.dot(B)
A_F = np.sqrt(np.sum(np.square(A)))
B_F = np.sqrt(np.sum(np.square(B)))
times = 1000
Summary(times, n, c, P, A_F, B_F, AB)
粗略的结果:
用了原矩阵的一半的维度,代价是约17%的误差。
用正态分布生成矩阵的时候,发现,如果是标准正态分布,效果很差,我猜是由计算机舍入误差引起的,这样的采样的性能不好。当均值增加的时候,和”均匀分布“差不多,甚至更优(F范数的意义上)。
补充:
Sampling Matrix的更多相关文章
- 【NLP】Conditional Language Modeling with Attention
Review: Conditional LMs Note that, in the Encoder part, we reverse the input to the ‘RNN’ and it per ...
- Sampling Distributions and Central Limit Theorem in R(转)
The Central Limit Theorem (CLT), and the concept of the sampling distribution, are critical for unde ...
- [LeetCode] Random Flip Matrix 随机翻转矩阵
You are given the number of rows n_rows and number of columns n_cols of a 2D binary matrix where all ...
- 【RS】Sparse Probabilistic Matrix Factorization by Laplace Distribution for Collaborative Filtering - 基于拉普拉斯分布的稀疏概率矩阵分解协同过滤
[论文标题]Sparse Probabilistic Matrix Factorization by Laplace Distribution for Collaborative Filtering ...
- 470. Implement Rand10() Using Rand7() (拒绝采样Reject Sampling)
1. 问题 已提供一个Rand7()的API可以随机生成1到7的数字,使用Rand7实现Rand10,Rand10可以随机生成1到10的数字. 2. 思路 简单说: (1)通过(Rand N - 1) ...
- [Python] 01 - Number and Matrix
故事背景 一.大纲 如下,chapter4 是个概览,之后才是具体讲解. 二. 编译过程 Ref: http://www.dsf.unica.it/~fiore/LearningPython.pdf
- 目录:Matrix Differential Calculus with Applications in Statistics and Econometrics,3rd_[Magnus2019]
目录:Matrix Differential Calculus with Applications in Statistics and Econometrics,3rd_[Magnus2019] Ti ...
- 【论文笔记】SamWalker: Social Recommendation with Informative Sampling Strategy
SamWalker: Social Recommendation with Informative Sampling Strategy Authors: Jiawei Chen, Can Wang, ...
- angular2系列教程(十一)路由嵌套、路由生命周期、matrix URL notation
今天我们要讲的是ng2的路由的第二部分,包括路由嵌套.路由生命周期等知识点. 例子 例子仍然是上节课的例子:
随机推荐
- 利用开机账户登录“轻松访问”创建Windows后门
利用开机账户登录“轻松访问”创建Windows后门 实验原理: 利用登录账户界面的“轻松访问”中的“放大镜”,把它替换为cmd.exe程序,实现在不登录的情况下打开命令提示符,并进行一些操作(打开的c ...
- JavaScript -- 时光流逝(一):数据类型,变量,类型转换,函数
JavaScript -- 知识点回顾篇(一):数据类型,变量,类型转换,函数 1. 数据类型 Boolean:值类型,布尔(逻辑)只能有两个值:true 或 false. Number:值类型,Ja ...
- Hadoop2.7.6_01_部署
1. 主机规划 主机名称 外网IP 内网IP 操作系统 备注 安装软件 mini01 10.0.0.11 172.16.1.11 CentOS 7.4 ssh port:22 Hadoop [Name ...
- LeetCode算法题-Fizz Buzz(Java实现)
这是悦乐书的第221次更新,第233篇原创 01 看题和准备 今天介绍的是LeetCode算法题中Easy级别的第88题(顺位题号是412). 编写一个程序,输出从1到n的数字的字符串表示.但对于三的 ...
- Redis 的安装 使用 通知事件
Redis 的安装 使用 介绍: redis是一个key-value存储系统.和Memcached类似,它支持存储的value类型相对更多,包括string.list.set.zset(sorted ...
- docker学习笔记(四)-持久化数据,安装docker-compose
Docker 持久化数据 实战 compose 安装docker-compose
- SQLite的原子提交--单文件场景
3. 单文件提交 我们首先概要说明SQLite在单个数据库文件上为了执行事务的原子提交而采取的步骤.在后面的部分将讨论如何设计文件格式以保护其在断电故障中损坏,以及原子提交在多个数据库上的执行. 3. ...
- C#释放资源文件dll或exe
将程序包含的资源文件释放到硬盘上 1.VS2017-新建 winform(窗体应用)命名为 loader 2.在解决方案管理器中,展开项目loader 在 properties 下面,找到[Reso ...
- 关于 chrome canary X64 在 win7 64bit 下面缺少openvr_api.dll的解决方法
在github上下载openvr_api.dll放到chrome的安装目录下就可以. 其实放到系统目录下最好,以后其他程序要使用的时候也能使用的到. https://github.com/ValveS ...
- Linux:Day5 shell编程初步、grep
bash的基本特性(3) 1.提供了编程环境 程序编程风格: 过程式:以指令为中心,数据服务于指令: 对象式:以数据为中心,指令服务于数据: shell程序:提供了编程能力,解释执行:过程式.解释执行 ...