Hadoop 倒排索引
倒排索引是文档检索系统中最常用的数据结构,被广泛地应用于全文搜索引擎。它主要是用来存储某个单词(或词组)在一个文档或一组文档中存储位置的映射,即提供了一种根据内容来查找文档的方式。由于不是根据文档来确定文档所包含的内容,而是进行相反的操作,因而称为倒排索引(Inverted Index)。
一、实例描述
倒排索引简单地就是,根据单词,返回它在哪个文件中出现过,而且频率是多少的结果。这就像百度里的搜索,你输入一个关键字,那么百度引擎就迅速的在它的服务器里找到有该关键字的文件,并根据频率和其他的一些策略(如页面点击投票率)等来给你返回结果。这个过程中,倒排索引就起到很关键的作用。
样例输入:

样例输出:

二、设计思路
倒排索引涉及几个过程:Map过程,Combine过程,Reduce过程。
Map过程:
当你把需要处理的文档上传到hdfs时,首先默认的TextInputFormat类对输入的文件进行处理,得到文件中每一行的偏移量和这一行内容的键值对<偏移量,内容>做为map的输入。在改写map函数的时候,我们就需要考虑,怎么设计key和value的值来适合MapReduce框架,从而得到正确的结果。由于我们要得到单词,所属的文档URL,词频,而<key,value>只有两个值,那么就必须得合并其中得两个信息了。这里我们设计key=单词+URL,value=词频。即map得输出为<单词+URL,词频>,之所以将单词+URL做为key,时利用MapReduce框架自带得Map端进行排序。
Combine过程:
Combine过程将key值相同得value值累加,得到一个单词在文档上得词频。但是为了把相同得key交给同一个reduce处理,我们需要设计为key=单词,value=URL+词频。
Reduce过程:
Reduce过程其实就是一个合并的过程了,只需将相同的key值的value值合并成倒排索引需要的格式即可。
三、程序代码
程序代码如下:
import java.io.IOException;
import java.util.StringTokenizer; import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.FileSplit;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser; public class InvertedIndex { public static class Map extends Mapper<LongWritable, Text, Text, Text>{
private static Text word = new Text();
private static Text one = new Text(); @Override
protected void map(LongWritable key, Text value,Mapper<LongWritable, Text, Text, Text>.Context context)
throws IOException, InterruptedException {
// super.map(key, value, context);
String fileName = ((FileSplit)context.getInputSplit()).getPath().getName();
StringTokenizer st = new StringTokenizer(value.toString());
while (st.hasMoreTokens()) {
word.set(st.nextToken()+"\t"+fileName);
context.write(word, one);
}
}
} public static class Combine extends Reducer<Text, Text, Text, Text>{
private static Text word = new Text();
private static Text index = new Text(); @Override
protected void reduce(Text key, Iterable<Text> values,Reducer<Text, Text, Text, Text>.Context context)
throws IOException, InterruptedException {
// super.reduce(arg0, arg1, arg2);
String[] splits = key.toString().split("\t");
if (splits.length != 2) {
return ;
}
long count = 0;
for(Text v:values){
count++;
}
word.set(splits[0]);
index.set(splits[1]+":"+count);
context.write(word, index);
}
} public static class Reduce extends Reducer<Text, Text, Text, Text>{
private static StringBuilder sub = new StringBuilder(256);
private static Text index = new Text(); @Override
protected void reduce(Text word, Iterable<Text> values,Reducer<Text, Text, Text, Text>.Context context)
throws IOException, InterruptedException {
// super.reduce(arg0, arg1, arg2);
for(Text v:values){
sub.append(v.toString()).append(";");
}
index.set(sub.toString());
context.write(word, index);
sub.delete(0, sub.length());
}
} public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
Configuration conf = new Configuration();
String[] otherArgs = new GenericOptionsParser(conf,args).getRemainingArgs();
if(otherArgs.length!=2){
System.out.println("Usage:wordcount <in> <out>");
System.exit(2);
}
Job job = new Job(conf,"Invert Index ");
job.setJarByClass(InvertedIndex.class); job.setMapperClass(Map.class);
job.setCombinerClass(Combine.class);
job.setReducerClass(Reduce.class); job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(Text.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class); FileInputFormat.addInputPath(job,new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
System.exit(job.waitForCompletion(true)?0:1);
} }
Hadoop 倒排索引的更多相关文章
- hadoop倒排索引
1.前言 学习hadoop的童鞋,倒排索引这个算法还是挺重要的.这是以后展开工作的基础.首先,我们来认识下什么是倒拍索引: 倒排索引简单地就是:根据单词,返回它在哪个文件中出现过,而且频率是多少的结果 ...
- Hadoop之倒排索引
前言: 从IT跨度到DT,如今的数据每天都在海量的增长.面对如此巨大的数据,如何能让搜索引擎更好的工作呢?本文作为Hadoop系列的第二篇,将介绍分布式情况下搜索引擎的基础实现,即“倒排索引”. 1. ...
- hadoop学习笔记之倒排索引
开发工具:eclipse 目标:对下面文档phone_numbers进行倒排索引: 13599999999 1008613899999999 12013944444444 13800138000137 ...
- hadoop实现倒排索引
hadoop实现倒排索引 本文用hadoop实现倒排索引算法,用基本的分两步完成,不使用combine 第一步 读入文档,统计文档中各个单词的个数,与word count类似,但这里把word-fil ...
- Hadoop学习笔记(8) ——实战 做个倒排索引
Hadoop学习笔记(8) ——实战 做个倒排索引 倒排索引是文档检索系统中最常用数据结构.根据单词反过来查在文档中出现的频率,而不是根据文档来,所以称倒排索引(Inverted Index).结构如 ...
- Hadoop案例(四)倒排索引(多job串联)与全局计数器
一. 倒排索引(多job串联) 1. 需求分析 有大量的文本(文档.网页),需要建立搜索索引 xyg pingping xyg ss xyg ss a.txt xyg pingping xyg pin ...
- hadoop学习第三天-MapReduce介绍&&WordCount示例&&倒排索引示例
一.MapReduce介绍 (最好以下面的两个示例来理解原理) 1. MapReduce的基本思想 Map-reduce的思想就是“分而治之” Map Mapper负责“分”,即把复杂的任务分解为若干 ...
- Hadoop实战-MapReduce之倒排索引(八)
倒排索引 (就是key和Value对调的显示结果) 一.需求:下面是用户播放音乐记录,统计歌曲被哪些用户播放过 tom LittleApple jack YesterdayO ...
- Hadoop MapReduce编程 API入门系列之倒排索引(二十四)
不多说,直接上代码. 2016-12-12 21:54:04,509 INFO [org.apache.hadoop.metrics.jvm.JvmMetrics] - Initializing JV ...
随机推荐
- OO课程第三次总结QWQ
调研,然后总结介绍规格化设计的大致发展历史和为什么得到了人们的重视 emmm为这个问题翻遍百度谷歌知乎也没有得到答案,那我就把自己认为最重要的两点简要说明一下吧,欢迎大家补充~ 1.便于完成代码的重用 ...
- WebService CXF知识总结
2018-10-23 <wsdl:service name="Iptv3aBasicService"> 客户端client信息,CXF会生成一个名为Iptv3ABasi ...
- POS VB
PPSM06S70: Add moddate EDITSPRINTJOB: MAX(TO_CHAR(ETRN.MODDATE, 'yyyy/mm/dd/HH24:MI AM')) ACTUAL_ ...
- ActivityThread 源码分析
ActivityThread是Android Framework中一个非常重要的类,它代表一个应用进程的主线程(对于应用进程来说,ActivityThread的main函数确实是由该进程的主线程执行) ...
- typeof 和 instanceof apply与call简单用法以及判断数组的坑
1 typeof 和 instanceof var array = [];平时如果判断一个对象是否为数组,可能你会用 typeof array,但是输出为“object”. typeof 一般只能返回 ...
- linux密码特殊字符识别
当密码是! @ # 等特殊字符, 用“\” 转译字符:比如密码为123!@#,我们在可以写123\!\@\#
- 使用electron开发指静脉客户端遇到的问题总结
使用electron 使用nodejs 的ffi模块调用dll文件 总结1.electron 与nodejs版本不需要一致,甚至nodejs版本应该高于electron的node版本2.要安装 Vis ...
- 在不安装sqlite3的时候使用sqlite3数据库以及问题/usr/bin/ld: skipping incompatible.....的解决
在没有安装sqlite3的linux机器上,怎么在不安装的情况下使用sqlite3的数据库呢: 其中只需要2个文件即可: 数据库的动态库libsqlite3.so,sqlite3.h. 另外,一些系统 ...
- PE文件常用结构体
Dos头结构: typedef struct _IMAGE_DOS_HEADER { // DOS .EXE header WORD e_magic; // Magic number WORD e_c ...
- Linux环境(Centos7)下部署.NetCore2.0的Web应用
Web应用基于Windows环境下开发,然后部署到Linux 1.进入VS2017,点击新建->项目->.NetCore->ASP.NET Core Web应用程序,确定 2.选择W ...